English 中文(简体)
Hilbert Transform
  • 时间:2024-11-03

Hilbert Transform


Previous Page Next Page  

Hilbert transform of a signal x(t) is defined as the transform in which phase angle of all components of the signal is shifted by $pm ext{90}^o $.

Hilbert transform of x(t) is represented with $hat{x}(t)$,and it is given by

$$ hat{x}(t) = { 1 over pi } int_{-infty}^{infty} {x(k) over t-k } dk $$

The inverse Hilbert transform is given by

$$ hat{x}(t) = { 1 over pi } int_{-infty}^{infty} {x(k) over t-k } dk $$

x(t), $hat{x}$(t) is called a Hilbert transform pair.

Properties of the Hilbert Transform

A signal x(t) and its Hilbert transform $hat{x}$(t) have

    The same ampptude spectrum.

    The same autocorrelation function.

    The energy spectral density is same for both x(t) and $hat{x}$(t).

    x(t) and $hat{x}$(t) are orthogonal.

    The Hilbert transform of $hat{x}$(t) is -x(t)

    If Fourier transform exist then Hilbert transform also exists for energy and power signals.

Advertisements