- Z-Transforms Properties
- Z-Transforms (ZT)
- Region of Convergence
- Laplace Transforms Properties
- Laplace Transforms
- Signals Sampling Techniques
- Signals Sampling Theorem
- Convolution and Correlation
- Hilbert Transform
- Distortion Less Transmission
- Fourier Transforms Properties
- Fourier Transforms
- Fourier Series Types
- Fourier Series Properties
- Fourier Series
- Signals Analysis
- Systems Classification
- Signals Basic Operations
- Signals Classification
- Signals Basic Types
- Signals & Systems Overview
- Signals & Systems Home
Signals and Systems Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Fourier Series Types
Trigonometric Fourier Series (TFS)
$sin nomega_0 t$ and $sin momega_0 t$ are orthogonal over the interval $(t_0, t_0+{2pi over omega_0})$. So $sinomega_0 t,, sin 2omega_0 t$ forms an orthogonal set. This set is not complete without {$cos nomega_0 t$ } because this cosine set is also orthogonal to sine set. So to complete this set we must include both cosine and sine terms. Now the complete orthogonal set contains all cosine and sine terms i.e. {$sin nomega_0 t,,cos nomega_0 t$ } where n=0, 1, 2...
$ herefore$ Any function x(t) in the interval $(t_0, t_0+{2pi over omega_0})$ can be represented as
$$ x(t) = a_0 cos0omega_0 t+ a_1 cos 1omega_0 t+ a_2 cos2 omega_0 t +...+ a_n cos nomega_0 t + ... $$
$$ + b_0 sin 0omega_0 t + b_1 sin 1omega_0 t +...+ b_n sin nomega_0 t + ... $$
$$ = a_0 + a_1 cos 1omega_0 t + a_2 cos 2 omega_0 t +...+ a_n cos nomega_0 t + ...$$
$$ + b_1 sin 1omega_0 t +...+ b_n sin nomega_0 t + ...$$
$$ herefore x(t) = a_0 + sum_{n=1}^{infty} (a_n cos nomega_0 t + b_n sin nomega_0 t ) quad (t_0< t < t_0+T)$$
The above equation represents trigonometric Fourier series representation of x(t).
$$ ext{Where} ,a_0 = {int_{t_0}^{t_0+T} x(t)·1 dt over int_{t_0}^{t_0+T} 1^2 dt} = {1 over T}· int_{t_0}^{t_0+T} x(t)dt $$
$$a_n = {int_{t_0}^{t_0+T} x(t)· cos nomega_0 t,dt over int_{t_0}^{t_0+T} cos ^2 nomega_0 t, dt}$$
$$b_n = {int_{t_0}^{t_0+T} x(t)· sin nomega_0 t,dt over int_{t_0}^{t_0+T} sin ^2 nomega_0 t, dt}$$
$$ ext{Here}, int_{t_0}^{t_0+T} cos ^2 nomega_0 t, dt = int_{t_0}^{t_0+T} sin ^2 nomega_0 t, dt = {Tover 2}$$
$$ herefore a_n = {2over T}· int_{t_0}^{t_0+T} x(t)· cos nomega_0 t,dt$$
$$b_n = {2over T}· int_{t_0}^{t_0+T} x(t)· sin nomega_0 t,dt$$
Exponential Fourier Series (EFS)
Consider a set of complex exponential functions $left{e^{jnomega_0 t} ight} (n=0, pm1, pm2...)$ which is orthogonal over the interval $(t_0, t_0+T)$. Where $T={2pi over omega_0}$ . This is a complete set so it is possible to represent any function f(t) as shown below
$ f(t) = F_0 + F_1e^{jomega_0 t} + F_2e^{j 2omega_0 t} + ... + F_n e^{j nomega_0 t} + ...$
$quad quad ,,F_{-1}e^{-jomega_0 t} + F_{-2}e^{-j 2omega_0 t} +...+ F_{-n}e^{-j nomega_0 t}+...$
$$ herefore f(t) = sum_{n=-infty}^{infty} F_n e^{j nomega_0 t} quad quad (t_0< t < t_0+T) ....... (1) $$
Equation 1 represents exponential Fourier series representation of a signal f(t) over the interval (t0, t0+T). The Fourier coefficient is given as
$$ F_n = {int_{t_0}^{t_0+T} f(t) (e^{j nomega_0 t} )^* dt over int_{t_0}^{t_0+T} e^{j nomega_0 t} (e^{j nomega_0 t} )^* dt} $$
$$ quad = {int_{t_0}^{t_0+T} f(t) e^{-j nomega_0 t} dt over int_{t_0}^{t_0+T} e^{-j nomega_0 t} e^{j nomega_0 t} dt} $$
$$ quad quad quad quad quad quad quad quad quad ,, = {int_{t_0}^{t_0+T} f(t) e^{-j nomega_0 t} dt over int_{t_0}^{t_0+T} 1, dt} = {1 over T} int_{t_0}^{t_0+T} f(t) e^{-j nomega_0 t} dt $$
$$ herefore F_n = {1 over T} int_{t_0}^{t_0+T} f(t) e^{-j nomega_0 t} dt $$
Relation Between Trigonometric and Exponential Fourier Series
Consider a periodic signal x(t), the TFS & EFS representations are given below respectively
$ x(t) = a_0 + Sigma_{n=1}^{infty}(a_n cos nomega_0 t + b_n sin nomega_0 t) ... ... (1)$
$ x(t) = Sigma_{n=-infty}^{infty} F_n e^{j nomega_0 t}$
$quad ,,, = F_0 + F_1e^{jomega_0 t} + F_2e^{j 2omega_0 t} + ... + F_n e^{j nomega_0 t} + ... $
$quad quad quad quad F_{-1} e^{-jomega_0 t} + F_{-2}e^{-j 2omega_0 t} + ... + F_{-n}e^{-j nomega_0 t} + ... $
$ = F_0 + F_1(cos omega_0 t + j sinomega_0 t) + F_2(cos 2omega_0 t + j sin 2omega_0 t) + ... + F_n(cos nomega_0 t+j sin nomega_0 t)+ ... + F_{-1}(cosomega_0 t-j sinomega_0 t) + F_{-2}(cos 2omega_0 t-j sin 2omega_0 t) + ... + F_{-n}(cos nomega_0 t-j sin nomega_0 t) + ... $
$ = F_0 + (F_1+ F_{-1}) cosomega_0 t + (F_2+ F_{-2}) cos2omega_0 t +...+ j(F_1 - F_{-1}) sinomega_0 t + j(F_2 - F_{-2}) sin2omega_0 t+... $
$ herefore x(t) = F_0 + Sigma_{n=1}^{infty}( (F_n +F_{-n} ) cos nomega_0 t+j(F_n-F_{-n}) sin nomega_0 t) ... ... (2) $
Compare equation 1 and 2.
$a_0= F_0$
$a_n=F_n+F_{-n}$
$b_n = j(F_n-F_{-n} )$
Similarly,
$F_n = frac12 (a_n - jb_n )$
$F_{-n} = frac12 (a_n + jb_n )$
Advertisements