- Z-Transforms Properties
- Z-Transforms (ZT)
- Region of Convergence
- Laplace Transforms Properties
- Laplace Transforms
- Signals Sampling Techniques
- Signals Sampling Theorem
- Convolution and Correlation
- Hilbert Transform
- Distortion Less Transmission
- Fourier Transforms Properties
- Fourier Transforms
- Fourier Series Types
- Fourier Series Properties
- Fourier Series
- Signals Analysis
- Systems Classification
- Signals Basic Operations
- Signals Classification
- Signals Basic Types
- Signals & Systems Overview
- Signals & Systems Home
Signals and Systems Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Fourier Series Properties
These are properties of Fourier series:
Linearity Property
If $ x(t) xleftarrow[,]{fourier,series}xrightarrow[,]{coefficient} f_{xn}$ & $ y(t) xleftarrow[,]{fourier,series}xrightarrow[,]{coefficient} f_{yn}$
then pnearity property states that
$ ext{a}, x(t) + ext{b}, y(t) xleftarrow[,]{fourier,series}xrightarrow[,]{coefficient} ext{a}, f_{xn} + ext{b}, f_{yn}$
Time Shifting Property
If $ x(t) xleftarrow[,]{fourier,series}xrightarrow[,]{coefficient} f_{xn}$
then time shifting property states that
$x(t-t_0) xleftarrow[,]{fourier,series}xrightarrow[,]{coefficient} e^{-jnomega_0 t_0}f_{xn} $
Frequency Shifting Property
If $ x(t) xleftarrow[,]{fourier,series}xrightarrow[,]{coefficient} f_{xn}$
then frequency shifting property states that
$e^{jnomega_0 t_0} . x(t) xleftarrow[,]{fourier,series}xrightarrow[,]{coefficient} f_{x(n-n_0)} $
Time Reversal Property
If $ x(t) xleftarrow[,]{fourier,series}xrightarrow[,]{coefficient} f_{xn}$
then time reversal property states that
If $ x(-t) xleftarrow[,]{fourier,series}xrightarrow[,]{coefficient} f_{-xn}$
Time Scapng Property
If $ x(t) xleftarrow[,]{fourier,series}xrightarrow[,]{coefficient} f_{xn}$
then time scapng property states that
If $ x(at) xleftarrow[,]{fourier,series}xrightarrow[,]{coefficient} f_{xn}$
Time scapng property changes frequency components from $omega_0$ to $aomega_0$.
Differentiation and Integration Properties
If $ x(t) xleftarrow[,]{fourier,series}xrightarrow[,]{coefficient} f_{xn}$
then differentiation property states that
If $ {dx(t)over dt} xleftarrow[,]{fourier,series}xrightarrow[,]{coefficient} jnomega_0 . f_{xn}$
& integration property states that
If $ int x(t) dt xleftarrow[,]{fourier,series}xrightarrow[,]{coefficient} {f_{xn} over jnomega_0} $
Multippcation and Convolution Properties
If $ x(t) xleftarrow[,]{fourier,series}xrightarrow[,]{coefficient} f_{xn}$ & $ y(t) xleftarrow[,]{fourier,series}xrightarrow[,]{coefficient} f_{yn}$
then multippcation property states that
$ x(t) . y(t) xleftarrow[,]{fourier,series}xrightarrow[,]{coefficient} T f_{xn} * f_{yn}$
& convolution property states that
$ x(t) * y(t) xleftarrow[,]{fourier,series}xrightarrow[,]{coefficient} T f_{xn} . f_{yn}$
Conjugate and Conjugate Symmetry Properties
If $ x(t) xleftarrow[,]{fourier,series}xrightarrow[,]{coefficient} f_{xn}$
Then conjugate property states that
$ x*(t) xleftarrow[,]{fourier,series}xrightarrow[,]{coefficient} f*_{xn}$
Conjugate symmetry property for real valued time signal states that
$$f*_{xn} = f_{-xn}$$
& Conjugate symmetry property for imaginary valued time signal states that
$$f*_{xn} = -f_{-xn} $$
Advertisements