Automata Theory Tutorial
Classification of Grammars
Regular Grammar
Context-Free Grammars
Pushdown Automata
Turing Machine
Decidability
Automata Theory Useful Resources
Selected Reading
- Moore & Mealy Machines
- DFA Minimization
- NDFA to DFA Conversion
- Non-deterministic Finite Automaton
- Deterministic Finite Automaton
- Automata Theory Introduction
- Automata Theory - Home
Classification of Grammars
Regular Grammar
- DFA Complement
- Pumping Lemma for Regular Grammar
- Constructing FA from RE
- Regular Sets
- Regular Expressions
Context-Free Grammars
- Pumping Lemma for CFG
- Greibach Normal Form
- Chomsky Normal Form
- CFG Simplification
- CFL Closure Properties
- Ambiguity in Grammar
- Context-Free Grammar Introduction
Pushdown Automata
- PDA & Parsing
- PDA & Context Free Grammar
- Pushdown Automata Acceptance
- Pushdown Automata Introduction
Turing Machine
- Linear Bounded Automata
- Semi-Infinite Tape Turing Machine
- Non-Deterministic Turing Machine
- Multi-Track Turing Machine
- Multi-tape Turing Machine
- Accepted & Decided Language
- Turing Machine Introduction
Decidability
- Post Correspondence Problem
- Rice Theorem
- Turing Machine Halting Problem
- Undecidable Language
- Language Decidability
Automata Theory Useful Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Automata Theory - Discussion
Discuss Automata Theory
Automata Theory is a branch of computer science that deals with designing abstract selfpropelled computing devices that follow a predetermined sequence of operations automatically. An automaton with a finite number of states is called a Finite Automaton. This is a brief and concise tutorial that introduces the fundamental concepts of Finite Automata, Regular Languages, and Pushdown Automata before moving onto Turing machines and Decidabipty.
Advertisements