- Moore & Mealy Machines
- DFA Minimization
- NDFA to DFA Conversion
- Non-deterministic Finite Automaton
- Deterministic Finite Automaton
- Automata Theory Introduction
- Automata Theory - Home
Classification of Grammars
Regular Grammar
- DFA Complement
- Pumping Lemma for Regular Grammar
- Constructing FA from RE
- Regular Sets
- Regular Expressions
Context-Free Grammars
- Pumping Lemma for CFG
- Greibach Normal Form
- Chomsky Normal Form
- CFG Simplification
- CFL Closure Properties
- Ambiguity in Grammar
- Context-Free Grammar Introduction
Pushdown Automata
- PDA & Parsing
- PDA & Context Free Grammar
- Pushdown Automata Acceptance
- Pushdown Automata Introduction
Turing Machine
- Linear Bounded Automata
- Semi-Infinite Tape Turing Machine
- Non-Deterministic Turing Machine
- Multi-Track Turing Machine
- Multi-tape Turing Machine
- Accepted & Decided Language
- Turing Machine Introduction
Decidability
- Post Correspondence Problem
- Rice Theorem
- Turing Machine Halting Problem
- Undecidable Language
- Language Decidability
Automata Theory Useful Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Rice Theorem
Rice theorem states that any non-trivial semantic property of a language which is recognized by a Turing machine is undecidable. A property, P, is the language of all Turing machines that satisfy that property.
Formal Definition
If P is a non-trivial property, and the language holding the property, Lp , is recognized by Turing machine M, then Lp = {<M> | L(M) ∈ P} is undecidable.
Description and Properties
Property of languages, P, is simply a set of languages. If any language belongs to P (L ∈ P), it is said that L satisfies the property P.
A property is called to be trivial if either it is not satisfied by any recursively enumerable languages, or if it is satisfied by all recursively enumerable languages.
A non-trivial property is satisfied by some recursively enumerable languages and are not satisfied by others. Formally speaking, in a non-trivial property, where L ∈ P, both the following properties hold:
Property 1 − There exists Turing Machines, M1 and M2 that recognize the same language, i.e. either ( <M1>, <M2> ∈ L ) or ( <M1>,<M2> ∉ L )
Property 2 − There exists Turing Machines M1 and M2, where M1 recognizes the language while M2 does not, i.e. <M1> ∈ L and <M2> ∉ L
Proof
Suppose, a property P is non-trivial and φ ∈ P.
Since, P is non-trivial, at least one language satisfies P, i.e., L(M0) ∈ P , ∋ Turing Machine M0.
Let, w be an input in a particular instant and N is a Turing Machine which follows −
On input x
Run M on w
If M does not accept (or doesn t halt), then do not accept x (or do not halt)
If M accepts w then run M0 on x. If M0 accepts x, then accept x.
A function that maps an instance ATM = {<M,w>| M accepts input w} to a N such that
If M accepts w and N accepts the same language as M0, Then L(M) = L(M0) ∈ p
If M does not accept w and N accepts φ, Then L(N) = φ ∉ p
Since ATM is undecidable and it can be reduced to Lp, Lp is also undecidable.
Advertisements