Automata Theory Tutorial
Classification of Grammars
Regular Grammar
Context-Free Grammars
Pushdown Automata
Turing Machine
Decidability
Automata Theory Useful Resources
Selected Reading
- Moore & Mealy Machines
- DFA Minimization
- NDFA to DFA Conversion
- Non-deterministic Finite Automaton
- Deterministic Finite Automaton
- Automata Theory Introduction
- Automata Theory - Home
Classification of Grammars
Regular Grammar
- DFA Complement
- Pumping Lemma for Regular Grammar
- Constructing FA from RE
- Regular Sets
- Regular Expressions
Context-Free Grammars
- Pumping Lemma for CFG
- Greibach Normal Form
- Chomsky Normal Form
- CFG Simplification
- CFL Closure Properties
- Ambiguity in Grammar
- Context-Free Grammar Introduction
Pushdown Automata
- PDA & Parsing
- PDA & Context Free Grammar
- Pushdown Automata Acceptance
- Pushdown Automata Introduction
Turing Machine
- Linear Bounded Automata
- Semi-Infinite Tape Turing Machine
- Non-Deterministic Turing Machine
- Multi-Track Turing Machine
- Multi-tape Turing Machine
- Accepted & Decided Language
- Turing Machine Introduction
Decidability
- Post Correspondence Problem
- Rice Theorem
- Turing Machine Halting Problem
- Undecidable Language
- Language Decidability
Automata Theory Useful Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Undecidable Language
Undecidable Languages
For an undecidable language, there is no Turing Machine which accepts the language and makes a decision for every input string w (TM can make decision for some input string though). A decision problem P is called “undecidable” if the language L of all yes instances to P is not decidable. Undecidable languages are not recursive languages, but sometimes, they may be recursively enumerable languages.
Example
The halting problem of Turing machine
The mortapty problem
The mortal matrix problem
The Post correspondence problem, etc.