English 中文(简体)
Automata Theory Introduction
  • 时间:2024-12-22

Automata Theory Introduction


Previous Page Next Page  

Automata – What is it?

The term "Automata" is derived from the Greek word "αὐτόματα" which means "self-acting". An automaton (Automata in plural) is an abstract self-propelled computing device which follows a predetermined sequence of operations automatically.

An automaton with a finite number of states is called a Finite Automaton (FA) or Finite State Machine (FSM).

Formal definition of a Finite Automaton

An automaton can be represented by a 5-tuple (Q, ∑, δ, q0, F), where −

    Q is a finite set of states.

    is a finite set of symbols, called the alphabet of the automaton.

    δ is the transition function.

    q0 is the initial state from where any input is processed (q0 ∈ Q).

    F is a set of final state/states of Q (F ⊆ Q).

Related Terminologies

Alphabet

    Definition − An alphabet is any finite set of symbols.

    Example − ∑ = {a, b, c, d} is an alphabet set where ‘a’, ‘b’, ‘c’, and ‘d’ are symbols.

String

    Definition − A string is a finite sequence of symbols taken from ∑.

    Example − ‘cabcad’ is a vapd string on the alphabet set ∑ = {a, b, c, d}

Length of a String

    Definition − It is the number of symbols present in a string. (Denoted by |S|).

    Examples

      If S = ‘cabcad’, |S|= 6

      If |S|= 0, it is called an empty string (Denoted by λ or ε)

Kleene Star

    Definition − The Kleene star, ∑*, is a unary operator on a set of symbols or strings, , that gives the infinite set of all possible strings of all possible lengths over including λ.

    Representation − ∑* = ∑0 ∪ ∑1 ∪ ∑2 ∪……. where ∑p is the set of all possible strings of length p.

    Example − If ∑ = {a, b}, ∑* = {λ, a, b, aa, ab, ba, bb,………..}

Kleene Closure / Plus

    Definition − The set + is the infinite set of all possible strings of all possible lengths over ∑ excluding λ.

    Representation − ∑+ = ∑1 ∪ ∑2 ∪ ∑3 ∪…….

    + = ∑* − { λ }

    Example − If ∑ = { a, b } , ∑+ = { a, b, aa, ab, ba, bb,………..}

Language

    Definition − A language is a subset of ∑* for some alphabet ∑. It can be finite or infinite.

    Example − If the language takes all possible strings of length 2 over ∑ = {a, b}, then L = { ab, aa, ba, bb }

Advertisements