- Electrical Machines - Discussion
- Electrical Machines - Resources
- Electrical Machines - Quick Guide
- Power Developed by Synchronous Motor
- Equivalent Circuit and Power Factor of Synchronous Motor
- Working of 3-Phase Synchronous Motor
- Losses and Efficiency of 3-Phase Alternator
- Output Power of 3-Phase Alternator
- Armature Reaction in Synchronous Machines
- Working of 3-Phase Alternator
- Construction of Synchronous Machine
- Introduction to 3-Phase Synchronous Machines
- Methods of Starting 3-Phase Induction Motors
- Speed Regulation and Speed Control
- Characteristics of 3-Phase Induction Motor
- Three-Phase Induction Motor on Load
- Construction of Three-Phase Induction Motor
- Three-Phase Induction Motor
- Single-Phase Induction Motor
- Introduction to Induction Motor
- Applications of DC Machines
- Losses in DC Machines
- Types of DC Motors
- Back EMF in DC Motor
- Working Principle of DC Motor
- Types of DC Generators
- EMF Equation of DC Generator
- Working Principle of DC Generator
- Types of DC Machines
- Construction of DC Machines
- Types of Transformers
- Three-Phase Transformer
- Efficiency of Transformer
- Losses in a Transformer
- Transformer on DC
- Ideal and Practical Transformers
- Turns Ratio and Voltage Transformation Ratio
- EMF Equation of Transformer
- Construction of Transformer
- Electrical Transformer
- Fleming’s Left Hand and Right Hand Rules
- Concept of Induced EMF
- Faraday’s Laws of Electromagnetic Induction
- Rotating Electrical Machines
- Singly-Excited and Doubly Excited Systems
- Energy Stored in a Magnetic Field
- Electromechanical Energy Conversion
- Electrical Machines - Home
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Turns Ratio and Voltage Transformation Ratio
As discussed in the previous chapter, the EMF of equation of a transformer is given by,
$$mathrm{mathit{E}:=:4.44:mathit{fphi _{m}:N}}$$
For primary winding,
$$mathrm{mathit{E_{mathrm{1}}}:=:4.44:mathit{fphi _{m}:N_{mathrm{1}}}:cdot cdot cdot (1)}$$
For secondary winding,
$$mathrm{mathit{E_{mathrm{2}}}:=:4.44:mathit{fphi _{m}:N_{mathrm{2}}}:cdot cdot cdot (2)}$$
Turns Ratio of Transformer
From equations (1) and (2), we have,
$$mathrm{frac{mathit{E_{mathrm{1}}}}{mathit{E_{mathrm{2}}}}:=:frac{mathit{N_{mathrm{1}}}}{mathit{N_{mathrm{2}}}}:=mathrm{a}::cdot cdot cdot (3)}$$
The constant "a" is known as the turns ratio of the transformer. It may be defined as under,
The ratio of number of turns in the primary winding the number of turns in the secondary winding of a transformer is known as turns ratio.
Voltage Transformation Ratio of Transformer
The ratio of output voltage to the input voltage of transformer is known as voltage transformer ratio, i.e.,
$$mathrm{mathrm{Transformation: Ratio}:=:frac{Output :Voltage}{Input :Voltage}}$$
Thus, if V1 is the input voltage and V2 is the output voltage of a transformer, then its transformation ratio is given by,
$$mathrm{mathrm{Transformation: Ratio}:=:frac{mathit{V_{mathrm{2}}}}{mathit{V_{mathrm{1}}}}:cdot cdot cdot (4)}$$
For an ideal transformer, V1 = E1 and V2 = E2, then
$$mathrm{mathrm{Transformation: Ratio}:=:frac{mathit{V_{mathrm{2}}}}{mathit{V_{mathrm{1}}}}:=:frac{mathit{E_{mathrm{2}}}}{mathit{E_{mathrm{1}}}}:=::frac{mathit{N_{mathrm{2}}}}{mathit{N_{mathrm{1}}}}:=:frac{1}{a}cdot cdot cdot (5)}$$
However, in a practical transformer, there is a small difference between V1 and E1, and V2 and E2, due to winding resistances. Although, this difference is very small so for analysis purposes, we take V1 = E1 and V2 = E2.
Numerical Example (1)
A transformer with 1000 primary turns and 400 secondary turns is suppped from a 220 V AC supply. Calculate the secondary voltage and the volts per turn.
Solution
Given data,
$$mathrm{mathit{N_{mathrm{1}}}:=:1000:mathrm{and}:mathit{N_{mathrm{2}}}:=:400}$$
$$mathrm{mathit{V_{mathrm{1}}}:=:220:V}$$
The turns ratio of transformer is,
$$mathrm{frac{mathit{V_{mathrm{1}}}}{mathit{V_{mathrm{2}}}}:=:frac{mathit{N_{mathrm{1}}}}{mathit{N_{mathrm{2}}}}}$$
$$mathrm{Rightarrow mathit{V_{mathrm{2}}}:=:mathit{V_{mathrm{1}}} imes frac{mathit{N_{mathrm{2}}}}{mathit{N_{mathrm{1}}}}:=:220 imes frac{400}{1000}}$$
$$mathrm{ hereforemathit{V_{mathrm{2}}}:=:88:mathrm{Volts}}$$
The volts per turn is given by,
$$mathrm{mathrm{For: primary: winding}:=:frac{mathit{V_{mathrm{1}}}}{mathit{N_{mathrm{1}}}}:=:frac{200}{1000}:=:0.22:mathrm{Volts}}$$
$$mathrm{mathrm{For: Secondary: winding}:=:frac{mathit{V_{mathrm{2}}}}{mathit{N_{mathrm{2}}}}:=:frac{88}{400}:=:0.22:mathrm{Volts}}$$
Hence, from this example, it is clear that the volts per turn for a transformer remain the same on both primary and secondary windings.
Numerical Example (2)
A transformer with an output voltage of 2200 V is suppped at 220 V. If the secondary winding has 2000 turns, then calculate the number of turns in primary winding.
Solution
Given data,
$$mathrm{mathit{V_{mathrm{1}}}:=:200:mathit{V}:mathrm{and}:mathit{V_{mathrm{2}}}:=:2200:mathit{V}}$$
$$mathrm{mathit{N_{mathrm{2}}}:=:2000:mathrm{turns}}$$
The turns ratio of transformer is,
$$mathrm{frac{mathit{V_{mathrm{1}}}}{mathit{V_{mathrm{2}}}}:=:frac{mathit{N_{mathrm{1}}}}{mathit{N_{mathrm{2}}}}}$$
$$mathrm{Rightarrow {mathit{N_{mathrm{1}}}}:=:mathit{N_{mathrm{2}}}: imes :frac{mathit{V_{mathrm{1}}}}{mathit{V_{mathrm{2}}}}:=:mathrm{2000}: imes :frac{220}{2200}:=:mathrm{200:turns}}$$
Advertisements