- Electrical Machines - Discussion
- Electrical Machines - Resources
- Electrical Machines - Quick Guide
- Power Developed by Synchronous Motor
- Equivalent Circuit and Power Factor of Synchronous Motor
- Working of 3-Phase Synchronous Motor
- Losses and Efficiency of 3-Phase Alternator
- Output Power of 3-Phase Alternator
- Armature Reaction in Synchronous Machines
- Working of 3-Phase Alternator
- Construction of Synchronous Machine
- Introduction to 3-Phase Synchronous Machines
- Methods of Starting 3-Phase Induction Motors
- Speed Regulation and Speed Control
- Characteristics of 3-Phase Induction Motor
- Three-Phase Induction Motor on Load
- Construction of Three-Phase Induction Motor
- Three-Phase Induction Motor
- Single-Phase Induction Motor
- Introduction to Induction Motor
- Applications of DC Machines
- Losses in DC Machines
- Types of DC Motors
- Back EMF in DC Motor
- Working Principle of DC Motor
- Types of DC Generators
- EMF Equation of DC Generator
- Working Principle of DC Generator
- Types of DC Machines
- Construction of DC Machines
- Types of Transformers
- Three-Phase Transformer
- Efficiency of Transformer
- Losses in a Transformer
- Transformer on DC
- Ideal and Practical Transformers
- Turns Ratio and Voltage Transformation Ratio
- EMF Equation of Transformer
- Construction of Transformer
- Electrical Transformer
- Fleming’s Left Hand and Right Hand Rules
- Concept of Induced EMF
- Faraday’s Laws of Electromagnetic Induction
- Rotating Electrical Machines
- Singly-Excited and Doubly Excited Systems
- Energy Stored in a Magnetic Field
- Electromechanical Energy Conversion
- Electrical Machines - Home
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
EMF Equation of Transformer
For electrical transformer, the EMF equation is a mathematical expression used to find the magnitude of induced EMF in the windings of the transformer.
Consider a transformer as shown in the figure. If N1 and N2 are the number of turns in primary and secondary windings. When we apply an alternating voltage V1 of frequency f to the primary winding, an alternating magnetic flux $phi$ is produced by the primary winding in the core.
If we assume sinusoidal AC voltage, then the magnetic flux can be given by,
$$mathrm{mathit{phi }:=:phi _{m}:mathrm{sin}:mathit{omega t}:cdot cdot cdot (1)}$$
Now, according to principle of electromagnetic induction, the instantaneous value of EMF e1 induced in the primary winding is given by,
$$mathrm{mathit{e_{mathrm{1}}}:=:mathit{-N_{mathrm{1}}}frac{mathit{dphi }}{mathit{dt}}}$$
$$mathrm{Rightarrow mathit{e_{mathrm{1}}}:=:mathit{-N_{mathrm{1}}}frac{mathit{d}}{mathit{dt}}left ( phi _{m}: mathrm{sin}:mathit{omega t} ight )}$$
$$mathrm{Rightarrow mathit{e_{mathrm{1}}}:=:mathit{-N_{mathrm{1}}}:mathit{omega phi :cos:omega t}}$$
$$mathrm{Rightarrow mathit{e_{mathrm{1}}}:=:-mathrm{2}mathit{pi fN_{mathrm{1}}}:mathit{phi_{m} :cos:omega t}}$$
Where,
$$mathrm{mathit{omega :=:mathrm{2}pi f}}$$
$$mathrm{ecause -mathit{cos:omega t}:=:mathrm{sin}left ( mathit{omega t-mathrm{90^{circ}}} ight )}$$
Therefore,
$$mathrm{mathit{e_{mathrm{1}}}:=:mathrm{2}mathit{phi fN_{mathrm{1}}}:mathit{phi_{m}:mathrm{sin}left ( mathit{omega t-mathrm{90^{circ}}} ight )}}:cdot cdot cdot (2)$$
Equation (2) may be written as,
$$mathrm{mathit{e_{mathrm{1}}}:=:mathit{E_{m_{mathrm{1}}}}mathrm{sin}left ( mathit{omega t-mathrm{90^{circ}}} ight ):cdot cdot cdot (3)}$$
Where,$mathit{E_{m_{mathrm{1}}}}$ is the maximum value of induced EMF $mathit{e_{mathrm{1}}}$.
$$mathrm{mathit{E_{mathrm{m1}}}:=:mathrm{2}mathit{pi fN_{mathrm{1}}}:mathit{phi_{m}}}$$
Now, for sinusoidal supply, the RMS value $mathit{E_{mathrm{1}}}$ of the primary winding EMF is given by,
$$mathrm{mathit{E_{mathrm{1}}}:=:frac{mathit{E_{mmathrm{1}}}}{sqrt{2}}:=:frac{2mathit{pi fN_{mathrm{1}}}phi_{m}}{sqrt{2}}}$$
$$mathrm{ hereforemathit{E_{mathrm{1}}}:=:4.44:mathit{fphi _{m}N_{mathrm{1}}}:cdot cdot cdot (4)}$$
Similarly, the RMS value E2 of the secondary winding EMF is,
$$mathrm{mathit{E_{mathrm{2}}}:=:4.44:mathit{fphi _{m}N_{mathrm{2}}}:cdot cdot cdot (5)}$$
In general,
$$mathrm{mathit{E}:=:4.44:mathit{fphi _{m}N}:cdot cdot cdot (6)}$$
Equation (6) is known as EMF equation of a transformer.
For a given transformer, if we spanide the EMF equation by the supply frequency, we get,
$$mathrm{frac{mathit{E}}{mathit{f}}:=:4.44:phi _{m}mathit{N}:=:mathrm{Constant}}$$
Which means the induced EMF per unit frequency is constant but it is not same on both primary and secondary side of the given transformer.
Also, from equations (4) and (5), we have,
$$mathrm{frac{mathit{E_{mathrm{1}}}}{mathit{E_{mathrm{2}}}}:=:frac{mathit{N_{mathrm{1}}}}{mathit{N_{mathrm{2}}}}:or:frac{mathit{E_{mathrm{1}}}}{mathit{N_{mathrm{1}}}}:=:frac{mathit{E_{mathrm{2}}}}{mathit{N_{mathrm{2}}}}}$$
Hence, in a transformer, the induced EMF per turn in the primary winding is equal to the induced EMF per turn in the secondary winding.
Numerical Example
A single phase 3300/240 V, 50 Hz transformer has a maximum magnetic flux of 0.0315 Wb in the core. Calculate the number of turns in primary and secondary windings.
Solution
Given data,
$$mathrm{mathit{E_{mathrm{1}}:=:mathrm{3300}:mathrm{V}:mathrm{and}:mathit{E_{mathrm{2}}:=:mathrm{240}:V}}}$$
$$mathrm{mathit{f}:=:50:Hz;:phi _{m}:=:0.0315:Wb}$$
The EMF equation of the transformer is,
$$mathrm{mathit{E}:=:4.44:mathit{fphi _{m}N}}$$
Therefore, for primary winding,
$$mathrm{mathit{N_{mathrm{1}}}:=:frac{mathit{E_{mathrm{1}}}}{4.44:mathit{fphi _{m}}}:=:frac{3300}{4.44 imes 50 imes 0.0315}}$$
$$mathrm{mathit{N_{mathrm{1}}}:=:471.9:=:472}$$
Also, for secondary winding,
$$mathrm{mathit{N_{mathrm{2}}}:=:frac{mathit{E_{mathrm{2}}}}{4.44:mathit{fphi _{m}}}:=:frac{240}{4.44 imes 50 imes 0.0315}}$$
$$mathrm{mathit{N_{mathrm{2}}}:=:34.32:=:35}$$
It is not possible for a winding to have part of a turn. Thus, the number of turns should be a whole number.
Advertisements