- DSP - Miscellaneous Signals
- DSP - Classification of DT Signals
- DSP - Classification of CT Signals
- DSP - Basic DT Signals
- DSP - Basic CT Signals
- DSP - Signals-Definition
- DSP - Home
Operations on Signals
- Operations Signals - Convolution
- Operations Signals - Integration
- Operations Signals - Differentiation
- Operations Signals - Reversal
- Operations Signals - Scaling
- Operations Signals - Shifting
Basic System Properties
- DSP - Solved Examples
- DSP - Unstable Systems
- DSP - Stable Systems
- DSP - Time-Variant Systems
- DSP - Time-Invariant Systems
- DSP - Non-Linear Systems
- DSP - Linear Systems
- DSP - Anti-Causal Systems
- DSP - Non-Causal Systems
- DSP - Causal Systems
- DSP - Dynamic Systems
- DSP - Static Systems
Z-Transform
- Z-Transform - Solved Examples
- Z-Transform - Inverse
- Z-Transform - Existence
- Z-Transform - Properties
- Z-Transform - Introduction
Discrete Fourier Transform
- DFT - Solved Examples
- DFT - Discrete Cosine Transform
- DFT - Sectional Convolution
- DFT - Linear Filtering
- DTF - Circular Convolution
- DFT - Time Frequency Transform
- DFT - Introduction
Fast Fourier Transform
Digital Signal Processing Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
DSP - DFT Solved Examples
Example 1
Verify Parseval’s theorem of the sequence $x(n) = frac{1^n}{4}u(n)$
Solution − $displaystylesumpmits_{-infty}^infty|x_1(n)|^2 = frac{1}{2pi}int_{-pi}^{pi}|X_1(e^{jomega})|^2domega$
L.H.S $displaystylesumpmits_{-infty}^infty|x_1(n)|^2$
$= displaystylesumpmits_{-infty}^{infty}x(n)x^*(n)$
$= displaystylesumpmits_{-infty}^infty(frac{1}{4})^{2n}u(n) = frac{1}{1-frac{1}{16}} = frac{16}{15}$
R.H.S. $X(e^{jomega}) = frac{1}{1-frac{1}{4}e-jomega} = frac{1}{1-0.25cos omega+j0.25sin omega}$
$Longleftrightarrow X^*(e^{jomega}) = frac{1}{1-0.25cos omega-j0.25sin omega}$
Calculating, $X(e^{jomega}).X^*(e^{jomega})$
$= frac{1}{(1-0.25cos omega)^2+(0.25sin omega)^2} = frac{1}{1.0625-0.5cos omega}$
$frac{1}{2pi}int_{-pi}^{pi}frac{1}{1.0625-0.5cos omega}domega$
$frac{1}{2pi}int_{-pi}^{pi}frac{1}{1.0625-0.5cos omega}domega = 16/15$
We can see that, LHS = RHS.(Hence Proved)
Example 2
Compute the N-point DFT of $x(n) = 3delta (n)$
Solution − We know that,
$X(K) = displaystylesumpmits_{n = 0}^{N-1}x(n)e^{frac{j2Pi kn}{N}}$
$= displaystylesumpmits_{n = 0}^{N-1}3delta(n)e^{frac{j2Pi kn}{N}}$
$ = 3delta (0) imes e^0 = 1$
So,$x(k) = 3,0leq kleq N-1$… Ans.
Example 3
Compute the N-point DFT of $x(n) = 7(n-n_0)$
Solution − We know that,
$X(K) = displaystylesumpmits_{n = 0}^{N-1}x(n)e^{frac{j2Pi kn}{N}}$
Substituting the value of x(n),
$displaystylesumpmits_{n = 0}^{N-1}7delta (n-n_0)e^{-frac{j2Pi kn}{N}}$
$= e^{-kj14Pi kn_0/N}$… Ans
Advertisements