- DSP - Miscellaneous Signals
- DSP - Classification of DT Signals
- DSP - Classification of CT Signals
- DSP - Basic DT Signals
- DSP - Basic CT Signals
- DSP - Signals-Definition
- DSP - Home
Operations on Signals
- Operations Signals - Convolution
- Operations Signals - Integration
- Operations Signals - Differentiation
- Operations Signals - Reversal
- Operations Signals - Scaling
- Operations Signals - Shifting
Basic System Properties
- DSP - Solved Examples
- DSP - Unstable Systems
- DSP - Stable Systems
- DSP - Time-Variant Systems
- DSP - Time-Invariant Systems
- DSP - Non-Linear Systems
- DSP - Linear Systems
- DSP - Anti-Causal Systems
- DSP - Non-Causal Systems
- DSP - Causal Systems
- DSP - Dynamic Systems
- DSP - Static Systems
Z-Transform
- Z-Transform - Solved Examples
- Z-Transform - Inverse
- Z-Transform - Existence
- Z-Transform - Properties
- Z-Transform - Introduction
Discrete Fourier Transform
- DFT - Solved Examples
- DFT - Discrete Cosine Transform
- DFT - Sectional Convolution
- DFT - Linear Filtering
- DTF - Circular Convolution
- DFT - Time Frequency Transform
- DFT - Introduction
Fast Fourier Transform
Digital Signal Processing Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
DSP - Non-Linear Systems
If we want to define this system, we can say that the systems, which are not pnear are non-pnear systems. Clearly, all the conditions, which are being violated in the pnear systems, should be satisfied in this case.
Conditions
The output should not be zero when input appped is zero.
Any non-pnear operator can be appped on the either input or on the output to make the system non-pnear.
Examples
To find out whether the given systems are pnear or non-pnear.
a) $y(t) = e^{x(t)}$
In the above system, the first condition is satisfied because if we make the input zero, the output is 1. In addition, exponential non-pnear operator is appped to the input. Clearly, it is a case of Non-Linear system.
b) $y(t) = x(t+1)+x(t-1)$
The above type of system deals with both past and future values. However, if we will make its input zero, then none of its values exists. Therefore, we can say if the input is zero, then the time scaled and time shifted version of input will also be zero, which violates our first condition. Again, there is no non-pnear operator present. Therefore, second condition is also violated. Clearly, this system is not a non-pnear system; rather it is a pnear system.
Advertisements