- DSP - Miscellaneous Signals
- DSP - Classification of DT Signals
- DSP - Classification of CT Signals
- DSP - Basic DT Signals
- DSP - Basic CT Signals
- DSP - Signals-Definition
- DSP - Home
Operations on Signals
- Operations Signals - Convolution
- Operations Signals - Integration
- Operations Signals - Differentiation
- Operations Signals - Reversal
- Operations Signals - Scaling
- Operations Signals - Shifting
Basic System Properties
- DSP - Solved Examples
- DSP - Unstable Systems
- DSP - Stable Systems
- DSP - Time-Variant Systems
- DSP - Time-Invariant Systems
- DSP - Non-Linear Systems
- DSP - Linear Systems
- DSP - Anti-Causal Systems
- DSP - Non-Causal Systems
- DSP - Causal Systems
- DSP - Dynamic Systems
- DSP - Static Systems
Z-Transform
- Z-Transform - Solved Examples
- Z-Transform - Inverse
- Z-Transform - Existence
- Z-Transform - Properties
- Z-Transform - Introduction
Discrete Fourier Transform
- DFT - Solved Examples
- DFT - Discrete Cosine Transform
- DFT - Sectional Convolution
- DFT - Linear Filtering
- DTF - Circular Convolution
- DFT - Time Frequency Transform
- DFT - Introduction
Fast Fourier Transform
Digital Signal Processing Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
DSP - DFT Time Frequency Transform
We know that when $omega = 2pi K/N$ and $N ightarrow infty,omega$ becomes a continuous variable and pmits summation become $-infty$ to $+infty$.
Therefore,
$$NC_k = X(frac{2pi}{N}k) = X(e^{jomega}) = displaystylesumpmits_{n = -infty}^infty x(n)e^{frac{-j2pi nk}{N}} = displaystylesumpmits_{n = -infty}^infty x(n)e^{-jomega n}$$Discrete Time Fourier Transform (DTFT)
We know that, $X(e^{jomega}) = sum_{n = -infty}^infty x(n)e^{-jomega n}$
Where, $X(e^{jomega})$ is continuous and periodic in ω and with period 2π.…eq(1)
Now,
$x_p(n) = sum_{k = 0}^{N-1}NC_ke^{j2 pi nk/N}$ … From Fourier series
$x_p(n) = frac{1}{2pi}sum_{k=0}^{N-1}NC_ke^{j2pi nk/N} imes frac{2pi}{N}$
ω becomes continuous and $frac{2pi}{N} ightarrow domega$, because of the reasons cited above.
$x(n) = frac{1}{2pi}int_{n = 0}^{2pi}X(e^{jomega})e^{jomega n}domega$…eq(2)
Inverse Discrete Time Fourier Transform
Symbopcally,
$x(n)Longleftrightarrow x(e^{jomega})$(The Fourier Transform pair)
Necessary and sufficient condition for existence of Discrete Time Fourier Transform for a non-periodic sequence x(n) is absolute summable.
i.e.$sum_{n = -infty}^infty|x(n)|<infty$
Properties of DTFT
Linearity : $a_1x_1(n)+a_2x_2(n)Leftrightarrow a_1X_1(e^{jomega})+a_2X_2(e^{jomega})$
Time shifting − $x(n-k)Leftrightarrow e^{-jomega k}.X(e^{jomega})$
Time Reversal − $x(-n)Leftrightarrow X(e^{-jomega})$
Frequency shifting − $e^{jomega _0n}x(n)Leftrightarrow X(e^{j(omega -omega _0)})$
Differentiation frequency domain − $nx(n) = jfrac{d}{domega}X(e^{jomega})$
Convolution − $x_1(n)*x_2(n)Leftrightarrow X_1(e^{jomega}) imes X_2(e^{jomega})$
Multippcation − $x_1(n) imes x_2(n)Leftrightarrow X_1(e^{jomega})*X_2(e^{jomega})$
Co-relation − $y_{x_1 imes x_2}(l)Leftrightarrow X_1(e^{jomega}) imes X_2(e^{jomega})$
Modulation theorem − $x(n)cos omega _0n = frac{1}{2}[X_1(e^{j(omega +omega _0})*X_2(e^{jw})$
Symmetry −$x^*(n)Leftrightarrow X^*(e^{-jomega})$ ;
$x^*(-n)Leftrightarrow X^*(e^{jomega})$ ;
$Real[x(n)]Leftrightarrow X_{even}(e^{jomega})$ ;
$Imag[x(n)]Leftrightarrow X_{odd}(e^{jomega})$ ;
$x_{even}(n)Leftrightarrow Real[x(e^{jomega})]$ ;
$x_{odd}(n)Leftrightarrow Imag[x(e^{jomega})]$ ;
Parseval’s theorem − $sum_{-infty}^infty|x_1(n)|^2 = frac{1}{2pi}int_{-pi}^{pi}|X_1(e^{jomega})|^2domega$
Earper, we studied samppng in frequency domain. With that basic knowledge, we sample $X(e^{jomega})$ in frequency domain, so that a convenient digital analysis can be done from that sampled data. Hence, DFT is sampled in both time and frequency domain. With the assumption $x(n) = x_p(n)$
Hence, DFT is given by −
$X(k) = DFT[x(n)] = X(frac{2pi}{N}k) = displaystylesumpmits_{n = 0}^{N-1}x(n)e^{-frac{j2pi nk}{N}}$,k=0,1,….,N−1…eq(3)
And IDFT is given by −
$X(n) = IDFT[X(k)] = frac{1}{N}sum_{k = 0}^{N-1}X(k)e^{frac{j2pi nk}{N}}$,n=0,1,….,N−1…eq(4)
$ herefore x(n)Leftrightarrow X(k)$
Twiddle Factor
It is denoted as $W_N$ and defined as $W_N = e^{-j2pi /N}$ . Its magnitude is always maintained at unity. Phase of $W_N = -2pi /N$ . It is a vector on unit circle and is used for computational convenience. Mathematically, it can be shown as −
$W_N^r = W_N^{rpm N} = W_N^{rpm 2N} = ...$
It is function of r and period N.
Consider N = 8, r = 0,1,2,3,….14,15,16,….
$Longleftrightarrow W_8^0 = W_8^8 = W_8^{16} = ... = ... = W_8^{32} = ... =1= 1angle 0$
$W_8^1 = W_8^9 = W_8^{17} = ... = ... = W_8^{33} = ... =frac{1}{sqrt 2}= jfrac{1}{sqrt 2} = 1angle-frac{pi}{4}$
Linear Transformation
Let us understand Linear Transformation −
We know that,
$DFT(k) = DFT[x(n)] = X(frac{2pi}{N}k) = sum_{n = 0}^{N-1}x(n).W_n^{-nk};quad k = 0,1,….,N−1$
$x(n) = IDFT[X(k)] = frac{1}{N}sum_{k = 0}^{N-1}X(k).W_N^{-nk};quad n = 0,1,….,N−1$
Note − Computation of DFT can be performed with N2 complex multippcation and N(N-1) complex addition.
$x_N = egin{bmatrix}x(0)\x(1)\.\.\x(N-1) end{bmatrix}quad Nquad pointquad vectorquad ofquad signalquad x_N$
$X_N = egin{bmatrix}X(0)\X(1)\.\.\X(N-1) end{bmatrix}quad Nquad pointquad vectorquad ofquad signalquad X_N$
$egin{bmatrix}1 & 1 & 1 & ... & ... & 1\1 & W_N & W_N^2 & ... & ... & W_N^{N-1}\. & W_N^2 & W_N^4 & ... & ... & W_N^{2(N-1)}\.\1 & W_N^{N-1} & W_N^{2(N-1)} & ... & ... & W_N^{(N-1)(N-1)} end{bmatrix}$
N - point DFT in matrix term is given by - $X_N = W_Nx_N$
$W_Nlongmapsto$ Matrix of pnear transformation
$Now,quad x_N = W_N^{-1}X_N$
IDFT in Matrix form is given by
$$x_N = frac{1}{N}W_N^*X_N$$Comparing both the expressions of $x_N,quad W_N^{-1} = frac{1}{N}W_N^*$ and $W_N imes W_N^* = N[I]_{N imes N}$
Therefore, $W_N$ is a pnear transformation matrix, an orthogonal (unitary) matrix.
From periodic property of $W_N$ and from its symmetric property, it can be concluded that, $W_N^{k+N/2} = -W_N^k$
Circular Symmetry
N-point DFT of a finite duration x(n) of length N≤L, is equivalent to the N-point DFT of periodic extension of x(n), i.e. $x_p(n)$ of period N. and $x_p(n) = sum_{l = -infty}^infty x(n-Nl)$ . Now, if we shift the sequence, which is a periodic sequence by k units to the right, another periodic sequence is obtained. This is known as Circular shift and this is given by,
$$x_p^prime (n) = x_p(n-k) = sum_{l = -infty}^infty x(n-k-Nl)$$The new finite sequence can be represented as
$$x_p^prime (n) = egin{cases}x_p^prime(n), & 0leq nleq N-1\0 & Otherwiseend{cases}$$Example − Let x(n)= {1,2,4,3}, N = 4,
$x_p^prime (n) = x(n-k,moduloquad N)equiv x((n-k))_Nquad;ex-ifquad k=2i.equad 2quad unitquad rightquad shiftquad andquad N = 4,$
Assumed clockwise direction as positive direction.
We got, $xprime(n) = x((n-2))_4$
$xprime(0) = x((-2))_4 = x(2) = 4$
$xprime(1) = x((-1))_4 = x(3) = 3$
$xprime(2) = x((-2))_4 = x(0) = 1$
$xprime(3) = x((1))_4 = x(1) = 2$
Conclusion − Circular shift of N-point sequence is equivalent to a pnear shift of its periodic extension and vice versa.
Circularly even sequence − $x(N-n) = x(n),quad 1leq nleq N-1$
$i.e.x_p(n) = x_p(-n) = x_p(N-n)$
Conjugate even −$x_p(n) = x_p^*(N-n)$
Circularly odd sequence − $x(N-n) = -x(n),quad 1leq nleq N-1$
$i.e.x_p(n) = -x_p(-n) = -x_p(N-n)$
Conjugate odd − $x_p(n) = -x_p^*(N-n)$
Now, $x_p(n) = x_{pe}+x_{po}(n)$, where,
$x_{pe}(n) = frac{1}{2}[x_p(n)+x_p^*(N-n)]$
$x_{po}(n) = frac{1}{2}[x_p(n)-x_p^*(N-n)]$
For any real signal x(n),$X(k) = X^*(N-k)$
$X_R(k) = X_R(N-k)$
$X_l(k) = -X_l(N-k)$
$angle X(k) = -angle X(N-K)$
Time reversal − reversing sample about the 0th sample. This is given as;
$x((-n))_N = x(N-n),quad 0leq nleq N-1$
Time reversal is plotting samples of sequence, in clockwise direction i.e. assumed negative direction.
Some Other Important Properties
Other important IDFT properties $x(n)longleftrightarrow X(k)$
Time reversal − $x((-n))_N = x(N-n)longleftrightarrow X((-k))_N = X(N-k)$
Circular time shift − $x((n-l))_N longleftrightarrow X(k)e^{j2pi lk/N}$
Circular frequency shift − $x(n)e^{j2pi ln/N} longleftrightarrow X((k-l))_N$
Complex conjugate properties −
$x^*(n)longleftrightarrow X^*((-k))_N = X^*(N-k)quad and$
$x^*((-n))_N = x^*(N-n)longleftrightarrow X^*(-k)$
Multippcation of two sequence −
$x_1(n)longleftrightarrow X_1(k)quad andquad x_2(n)longleftrightarrow X_2(k)$
$ herefore x_1(n)x_2(n)longleftrightarrow X_1(k)quadⓃ X_2(k)$
Circular convolution − and multippcation of two DFT
$x_1(k)quad Ⓝ x_2(k) =sum_{k = 0}^{N-1}x_1(n).x_2((m-n))_n,quad m = 0,1,2,... .,N-1 $
$x_1(k)quad Ⓝ x_2(k)longleftrightarrow X_1(k).X_2(k)$
Circular correlation − If $x(n)longleftrightarrow X(k)$ and $y(n)longleftrightarrow Y(k)$ , then there exists a cross correlation sequence denoted as $ar Y_{xy}$ such that $ar Y_{xy}(l) = sum_{n = 0}^{N-1}x(n)y^*((n-l))_N = X(k).Y^*(k)$
Parseval’s Theorem − If $x(n)longleftrightarrow X(k)$ and $y(n)longleftrightarrow Y(k)$;
$displaystylesumpmits_{n = 0}^{N-1}x(n)y^*(n) = frac{1}{N}displaystylesumpmits_{n =0}^{N-1}X(k).Y^*(k)$