- DSP - Miscellaneous Signals
- DSP - Classification of DT Signals
- DSP - Classification of CT Signals
- DSP - Basic DT Signals
- DSP - Basic CT Signals
- DSP - Signals-Definition
- DSP - Home
Operations on Signals
- Operations Signals - Convolution
- Operations Signals - Integration
- Operations Signals - Differentiation
- Operations Signals - Reversal
- Operations Signals - Scaling
- Operations Signals - Shifting
Basic System Properties
- DSP - Solved Examples
- DSP - Unstable Systems
- DSP - Stable Systems
- DSP - Time-Variant Systems
- DSP - Time-Invariant Systems
- DSP - Non-Linear Systems
- DSP - Linear Systems
- DSP - Anti-Causal Systems
- DSP - Non-Causal Systems
- DSP - Causal Systems
- DSP - Dynamic Systems
- DSP - Static Systems
Z-Transform
- Z-Transform - Solved Examples
- Z-Transform - Inverse
- Z-Transform - Existence
- Z-Transform - Properties
- Z-Transform - Introduction
Discrete Fourier Transform
- DFT - Solved Examples
- DFT - Discrete Cosine Transform
- DFT - Sectional Convolution
- DFT - Linear Filtering
- DTF - Circular Convolution
- DFT - Time Frequency Transform
- DFT - Introduction
Fast Fourier Transform
Digital Signal Processing Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Digital Signal Processing - Basic DT Signals
We have seen that how the basic signals can be represented in Continuous time domain. Let us see how the basic signals can be represented in Discrete Time Domain.
Unit Impulse Sequence
It is denoted as δ(n) in discrete time domain and can be defined as;
$$delta(n)=egin{cases}1, & for quad n=0\0, & Otherwiseend{cases}$$Unit Step Signal
Discrete time unit step signal is defined as;
$$U(n)=egin{cases}1, & for quad ngeq0\0, & for quad n<0end{cases}$$The figure above shows the graphical representation of a discrete step function.
Unit Ramp Function
A discrete unit ramp function can be defined as −
$$r(n)=egin{cases}n, & for quad ngeq0\0, & for quad n<0end{cases}$$The figure given above shows the graphical representation of a discrete ramp signal.
Parabopc Function
Discrete unit parabopc function is denoted as p(n) and can be defined as;
$$p(n) = egin{cases}frac{n^{2}}{2} ,& for quad ngeq0\0, & for quad n<0end{cases}$$In terms of unit step function it can be written as;
$$P(n) = frac{n^{2}}{2}U(n)$$The figure given above shows the graphical representation of a parabopc sequence.
Sinusoidal Signal
All continuous-time signals are periodic. The discrete-time sinusoidal sequences may or may not be periodic. They depend on the value of ω. For a discrete time signal to be periodic, the angular frequency ω must be a rational multiple of 2π.
A discrete sinusoidal signal is shown in the figure above.
Discrete form of a sinusoidal signal can be represented in the format −
$$x(n) = Asin(omega n + phi)$$Here A,ω and φ have their usual meaning and n is the integer. Time period of the discrete sinusoidal signal is given by −
$$N =frac{2pi m}{omega}$$Where, N and m are integers.
Advertisements