SQL Tutorial
5. 图瓦卢
Selected Reading
- SQL - Discussion
- SQL - Useful Resources
- SQL - Useful Functions
- SQL - Quick Guide
- SQL - Questions and Answers
- SQL - Datatype Functions
- SQL - Conversion Functions
- SQL - JSON Functions
- SQL - Cursor Functions
- SQL - Logical Functions
- SQL - Statistical Functions
- SQL - Text & Image Functions
- SQL - Numeric Functions
- SQL - Aggregate Functions
- SQL - String Functions
- SQL - Date Functions
- SQL - Database Tuning
- SQL - IN vs EXISTS
- SQL - Group By vs Order By
- SQL - Common Table Expression
- SQL - Cursors
- SQL - Date & Time
- SQL - Auto Increment
- SQL - Using Sequences
- SQL - Handling Duplicates
- SQL - Sub Queries
- SQL - Transactions
- SQL - NULL Values
- SQL - Stored Procedures
- SQL - Default Constraint
- SQL - Check Constraint
- SQL - Null Functions
- SQL - Min & Max
- SQL - Hosting
- SQL - Injection
- SQL - Comments
- SQL - Wildcards
- SQL - Non-Clustered Index
- SQL - Clustered Index
- SQL - Unique Index
- SQL - Primary Key
- - 工会诉Join
- SQL - Inner Join
- SQL - Using Joins
- SQL - Aliases
- SQL - EXCEPT Operator
- SQL - INTERSECT Operator
- SQL - UNION vs UNION ALL
- SQL - UNION Operator
- SQL - BETWEEN Operator
- SQL - NOT NULL
- SQL - IS NOT NULL
- SQL - IS NULL
- SQL - NOT EQUAL
- SQL - NOT Operator
- SQL - CASE
- SQL - EXISTS Operator
- SQL - ANY, ALL Operators
- SQL - IN Operator
- SQL - LIKE Operator
- SQL - BOOLEAN (BIT) Operator
- SQL - AND & OR
- SQL - Having Clause
- SQL - Group By Clause
- SQL - Order By Clause
- SQL - Distinct Clause
- SQL - Top Clause
- SQL - Where Clause
- SQL - Rename Views
- SQL - Drop Views
- SQL - Update Views
- SQL - Create Views
- SQL - Sorting Results
- SQL - Delete Query
- SQL - Update Query
- SQL - Insert Into Select
- SQL - Select Into
- SQL - Select Query
- SQL - Insert Query
- SQL - Constraints
- SQL - Delete Table
- SQL - Drop Table
- SQL - Alter Tables
- SQL - Temporary Tables
- SQL - Clone Tables
- SQL - Truncate Table
- SQL - Rename Table
- SQL - Show Tables
- SQL - Create Table
- SQL - Backup Database
- SQL - Show Database
- SQL - Rename Database
- SQL - Select Database
- SQL - Drop Database
- SQL - Create Database
- SQL - Expressions
- SQL - Operators
- SQL - Data Types
- SQL - Syntax
- SQL - Databases
- SQL - RDBMS Concepts
- SQL - Overview
- SQL - Home
5. 图瓦卢
- 页: 1
- 页: 1
- 结构-创建指数
- 页: 1
- 页: 1
- 页: 1
- SQL - Foreign Key
- 文 件
- ∗ E/CN.6/2009/1。
- 页: 1
- 页: 1
- 文 件
- 页: 1
- 页: 1
- 文 件
- 页: 1
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
页: 1
SQL - Cross Join
http://www.un.org。 这是一种基本类型的内ner,用于检索两个表的 Car产品(或跨产品)。 这意味着,这一合并将把第一个表格的每行与第二位(即每轮变动)的每行合并。
A Cartesian product, or a cross product, is the result achieved from multippcation of two sets. This is done by multiplying all the possible pairs from both the sets.
下面的样本数字以简单的方式说明了交叉。
各位可以看到,我们审议了两个表列: 奶类和奶类。 这些栏目中的每一栏都有一些需要加以匹配的记录。 因此,利用相互合并,我们把“奶类”一栏中的每一记录与“奶类”一栏的所有记录结合起来。 所得表格被视为 Car产品或 Jo。
Syntax
The following is the basic syntax of the Cross Join query in -kou
SELECT column_name(s) FROM table1 CROSS JOIN table2;
Example
让我们在现有数据库中考虑两个现有表格,并努力利用以下交叉点加入这些表格:
假设我们已经建立了一个名为“客户”的表格,其中载有客户的个人详情,包括姓名、年龄、地址和工资等,使用以下询问:
CREATE TABLE CUSTOMERS ( ID INT NOT NULL, NAME VARCHAR (20) NOT NULL, AGE INT NOT NULL, ADDRESS CHAR (25), SALARY DECIMAL (18, 2), PRIMARY KEY (ID) );
现在,在表格中添加以下价值观:
INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) VALUES (1, Ramesh , 32, Ahmedabad , 2000.00 ); INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) VALUES (2, Khilan , 25, Delhi , 1500.00 ); INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) VALUES (3, kaushik , 23, Kota , 2000.00 ); INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) VALUES (4, Chaitap , 25, Mumbai , 6500.00 ); INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) VALUES (5, Hardik , 27, Bhopal , 8500.00 ); INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) VALUES (6, Komal , 22, MP , 4500.00 ); INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) VALUES (7, Muffy , 24, Indore , 10000.00 );
该表将编成:
+----+----------+-----+-----------+----------+ | ID | NAME | AGE | ADDRESS | SALARY | +----+----------+-----+-----------+----------+ | 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 2 | Khilan | 25 | Delhi | 1500.00 | | 3 | Kaushik | 23 | Kota | 2000.00 | | 4 | Chaitap | 25 | Mumbai | 6500.00 | | 5 | Hardik | 27 | Bhopal | 8500.00 | | 6 | Komal | 22 | MP | 4500.00 | | 7 | Muffy | 24 | Indore | 10000.00 | +----+----------+-----+-----------+----------+
让我们制定另一份表格命令,载列所发布命令的细节和日期。
CREATE TABLE ORDERS ( OID INT NOT NULL, DATE VARCHAR (20) NOT NULL, CUSTOMER_ID INT NOT NULL, AMOUNT DECIMAL (18, 2), );
采用INSERT声明,在本表中插入以下数值:
INSERT INTO ORDERS (OID, DATE, CUSTOMER_ID, AMOUNT) VALUES (102, 2009-10-08 00:00:00 , 3, 3000.00); INSERT INTO ORDERS (OID, DATE, CUSTOMER_ID, AMOUNT) VALUES (100, 2009-10-08 00:00:00 , 3, 1500.00); INSERT INTO ORDERS (OID, DATE, CUSTOMER_ID, AMOUNT) VALUES (101, 2009-11-20 00:00:00 , 2, 1560.00); INSERT INTO ORDERS (OID, DATE, CUSTOMER_ID, AMOUNT) VALUES (103, 2008-05-20 00:00:00 , 4, 2060.00);
表格如下:
+-----+---------------------+-------------+---------+ | OID | DATE | CUSTOMER_ID | AMOUNT | +-----+---------------------+-------------+---------+ | 102 | 2009-10-08 00:00:00 | 3 | 3000.00 | | 100 | 2009-10-08 00:00:00 | 3 | 1500.00 | | 101 | 2009-11-20 00:00:00 | 2 | 1560.00 | | 103 | 2008-05-20 00:00:00 | 4 | 2060.00 | +-----+---------------------+-------------+---------+
现在,如果我们在上述两张表格上执行以下Cross Join query,那么,这些表格中的每一行都与订单表中的每一行合并。
SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS CROSS JOIN ORDERS;
Output
下表为:
+----+----------+--------+---------------------+ | ID | NAME | AMOUNT | DATE | +----+----------+--------+---------------------+ | 1 | Ramesh | 3000 | 2009-10-08 00:00:00 | | 1 | Ramesh | 1500 | 2009-10-08 00:00:00 | | 1 | Ramesh | 1560 | 2009-11-20 00:00:00 | | 1 | Ramesh | 2060 | 2008-05-20 00:00:00 | | 2 | Khilan | 3000 | 2009-10-08 00:00:00 | | 2 | Khilan | 1500 | 2009-10-08 00:00:00 | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 2 | Khilan | 2060 | 2008-05-20 00:00:00 | | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 3 | kaushik | 1560 | 2009-11-20 00:00:00 | | 3 | kaushik | 2060 | 2008-05-20 00:00:00 | | 4 | Chaitap | 3000 | 2009-10-08 00:00:00 | | 4 | Chaitap | 1500 | 2009-10-08 00:00:00 | | 4 | Chaitap | 1560 | 2009-11-20 00:00:00 | | 4 | Chaitap | 2060 | 2008-05-20 00:00:00 | | 5 | Hardik | 3000 | 2009-10-08 00:00:00 | | 5 | Hardik | 1500 | 2009-10-08 00:00:00 | | 5 | Hardik | 1560 | 2009-11-20 00:00:00 | | 5 | Hardik | 2060 | 2008-05-20 00:00:00 | | 6 | Komal | 3000 | 2009-10-08 00:00:00 | | 6 | Komal | 1500 | 2009-10-08 00:00:00 | | 6 | Komal | 1560 | 2009-11-20 00:00:00 | | 6 | Komal | 2060 | 2008-05-20 00:00:00 | | 7 | Muffy | 3000 | 2009-10-08 00:00:00 | | 7 | Muffy | 1500 | 2009-10-08 00:00:00 | | 7 | Muffy | 1560 | 2009-11-20 00:00:00 | | 7 | Muffy | 2060 | 2008-05-20 00:00:00 | +----+----------+--------+---------------------+
Joining Multiple Tables with Cross Join
我们还可以加入两个以上表格,同时加入。 在这种情况下,显示双向变动,结果表将包含比个别表格更多的记录。
Syntax
下面是参加多个表格的辛迪加,使用横跨卡卡加入——
SELECT column_name(s) FROM table1 CROSS JOIN table2 CROSS JOIN table3 CROSS JOIN table4 . . .
Example
让我们努力把三个表格的客户、订单和订单——Range合并起来,以显示多个表格的相互融合。
我们将努力利用下面的问询,创建“Range”教席。
CREATE TABLE ORDER_RANGE ( SNO INT NOT NULL, ORDER_RANGE VARCHAR (20) NOT NULL, );
现在,我们可以利用INSERT声明,将价值观纳入这一空表:
INSERT INTO ORDER_RANGE VALUES (1, 1-100 ); INSERT INTO ORDER_RANGE VALUES (2, 100-200 ); INSERT INTO ORDER_RANGE VALUES (3, 200-300 );
保护令表格如下:
+-----+-------------+ | SNO | ORDER_RANGE | +-----+-------------+ | 1 | 1-100 | | 2 | 100-200 | | 3 | 200-300 | +-----+-------------+
现在,我们利用以下交叉点,就表格提出看法,
SELECT ID, NAME, AMOUNT, DATE, ORDER_RANGE FROM CUSTOMERS CROSS JOIN ORDERS CROSS JOIN ORDER_RANGE;
Output
下表列出:
+----+----------+---------+---------------------+-------------+ | ID | NAME | AMOUNT | DATE | ORDER_RANGE | +----+----------+---------+---------------------+-------------+ | 1 | Ramesh | 2060.00 | 2008-05-20 00:00:00 | 1-100 | | 1 | Ramesh | 2060.00 | 2008-05-20 00:00:00 | 100-200 | | 1 | Ramesh | 2060.00 | 2008-05-20 00:00:00 | 200-300 | | 1 | Ramesh | 1560.00 | 2009-11-20 00:00:00 | 1-100 | | 1 | Ramesh | 1560.00 | 2009-11-20 00:00:00 | 100-200 | | 1 | Ramesh | 1560.00 | 2009-11-20 00:00:00 | 200-300 | | 1 | Ramesh | 1500.00 | 2009-10-08 00:00:00 | 1-100 | | 1 | Ramesh | 1500.00 | 2009-10-08 00:00:00 | 100-200 | | 1 | Ramesh | 1500.00 | 2009-10-08 00:00:00 | 200-300 | | 1 | Ramesh | 3000.00 | 2009-10-08 00:00:00 | 1-100 | | 1 | Ramesh | 3000.00 | 2009-10-08 00:00:00 | 100-200 | | 1 | Ramesh | 3000.00 | 2009-10-08 00:00:00 | 200-300 | | 2 | Khilan | 2060.00 | 2008-05-20 00:00:00 | 1-100 | | 2 | Khilan | 2060.00 | 2008-05-20 00:00:00 | 100-200 | | 2 | Khilan | 2060.00 | 2008-05-20 00:00:00 | 200-300 | | 2 | Khilan | 1560.00 | 2009-11-20 00:00:00 | 1-100 | | 2 | Khilan | 1560.00 | 2009-11-20 00:00:00 | 100-200 | | 2 | Khilan | 1560.00 | 2009-11-20 00:00:00 | 200-300 | | 2 | Khilan | 1500.00 | 2009-10-08 00:00:00 | 1-100 | | 2 | Khilan | 1500.00 | 2009-10-08 00:00:00 | 100-200 | | 2 | Khilan | 1500.00 | 2009-10-08 00:00:00 | 200-300 | | 2 | Khilan | 3000.00 | 2009-10-08 00:00:00 | 1-100 | | 2 | Khilan | 3000.00 | 2009-10-08 00:00:00 | 100-200 | | 2 | Khilan | 3000.00 | 2009-10-08 00:00:00 | 200-300 | | 3 | Kaushik | 2060.00 | 2008-05-20 00:00:00 | 1-100 | | 3 | Kaushik | 2060.00 | 2008-05-20 00:00:00 | 100-200 | | 3 | Kaushik | 2060.00 | 2008-05-20 00:00:00 | 200-300 | | 3 | Kaushik | 1560.00 | 2009-11-20 00:00:00 | 1-100 | | 3 | Kaushik | 1560.00 | 2009-11-20 00:00:00 | 100-200 | | 3 | Kaushik | 1560.00 | 2009-11-20 00:00:00 | 200-300 | | 3 | Kaushik | 1500.00 | 2009-10-08 00:00:00 | 1-100 | | 3 | Kaushik | 1500.00 | 2009-10-08 00:00:00 | 100-200 | | 3 | Kaushik | 1500.00 | 2009-10-08 00:00:00 | 200-300 | | 3 | Kaushik | 3000.00 | 2009-10-08 00:00:00 | 1-100 | | 3 | Kaushik | 3000.00 | 2009-10-08 00:00:00 | 100-200 | | 3 | Kaushik | 3000.00 | 2009-10-08 00:00:00 | 200-300 | | 4 | Chaitap | 2060.00 | 2008-05-20 00:00:00 | 1-100 | | 4 | Chaitap | 2060.00 | 2008-05-20 00:00:00 | 100-200 | | 4 | Chaitap | 2060.00 | 2008-05-20 00:00:00 | 200-300 | | 4 | Chaitap | 1560.00 | 2009-11-20 00:00:00 | 1-100 | | 4 | Chaitap | 1560.00 | 2009-11-20 00:00:00 | 100-200 | | 4 | Chaitap | 1560.00 | 2009-11-20 00:00:00 | 200-300 | | 4 | Chaitap | 1500.00 | 2009-10-08 00:00:00 | 1-100 | | 4 | Chaitap | 1500.00 | 2009-10-08 00:00:00 | 100-200 | | 4 | Chaitap | 1500.00 | 2009-10-08 00:00:00 | 200-300 | | 4 | Chaitap | 3000.00 | 2009-10-08 00:00:00 | 1-100 | | 4 | Chaitap | 3000.00 | 2009-10-08 00:00:00 | 100-200 | | 4 | Chaitap | 3000.00 | 2009-10-08 00:00:00 | 200-300 | | 5 | Hardik | 2060.00 | 2008-05-20 00:00:00 | 1-100 | | 5 | Hardik | 2060.00 | 2008-05-20 00:00:00 | 100-200 | | 5 | Hardik | 2060.00 | 2008-05-20 00:00:00 | 200-300 | | 5 | Hardik | 1560.00 | 2009-11-20 00:00:00 | 1-100 | | 5 | Hardik | 1560.00 | 2009-11-20 00:00:00 | 100-200 | | 5 | Hardik | 1560.00 | 2009-11-20 00:00:00 | 200-300 | | 5 | Hardik | 1500.00 | 2009-10-08 00:00:00 | 1-100 | | 5 | Hardik | 1500.00 | 2009-10-08 00:00:00 | 100-200 | | 5 | Hardik | 1500.00 | 2009-10-08 00:00:00 | 200-300 | | 5 | Hardik | 3000.00 | 2009-10-08 00:00:00 | 1-100 | | 5 | Hardik | 3000.00 | 2009-10-08 00:00:00 | 100-200 | | 5 | Hardik | 3000.00 | 2009-10-08 00:00:00 | 200-300 | | 6 | Komal | 2060.00 | 2008-05-20 00:00:00 | 1-100 | | 6 | Komal | 2060.00 | 2008-05-20 00:00:00 | 100-200 | | 6 | Komal | 2060.00 | 2008-05-20 00:00:00 | 200-300 | | 6 | Komal | 1560.00 | 2009-11-20 00:00:00 | 1-100 | | 6 | Komal | 1560.00 | 2009-11-20 00:00:00 | 100-200 | | 6 | Komal | 1560.00 | 2009-11-20 00:00:00 | 200-300 | | 6 | Komal | 1500.00 | 2009-10-08 00:00:00 | 1-100 | | 6 | Komal | 1500.00 | 2009-10-08 00:00:00 | 100-200 | | 6 | Komal | 1500.00 | 2009-10-08 00:00:00 | 200-300 | | 6 | Komal | 3000.00 | 2009-10-08 00:00:00 | 1-100 | | 6 | Komal | 3000.00 | 2009-10-08 00:00:00 | 100-200 | | 6 | Komal | 3000.00 | 2009-10-08 00:00:00 | 200-300 | | 7 | Muffy | 2060.00 | 2008-05-20 00:00:00 | 1-100 | | 7 | Muffy | 2060.00 | 2008-05-20 00:00:00 | 100-200 | | 7 | Muffy | 2060.00 | 2008-05-20 00:00:00 | 200-300 | | 7 | Muffy | 1560.00 | 2009-11-20 00:00:00 | 1-100 | | 7 | Muffy | 1560.00 | 2009-11-20 00:00:00 | 100-200 | | 7 | Muffy | 1560.00 | 2009-11-20 00:00:00 | 200-300 | | 7 | Muffy | 1500.00 | 2009-10-08 00:00:00 | 1-100 | | 7 | Muffy | 1500.00 | 2009-10-08 00:00:00 | 100-200 | | 7 | Muffy | 1500.00 | 2009-10-08 00:00:00 | 200-300 | | 7 | Muffy | 3000.00 | 2009-10-08 00:00:00 | 1-100 | | 7 | Muffy | 3000.00 | 2009-10-08 00:00:00 | 100-200 | | 7 | Muffy | 3000.00 | 2009-10-08 00:00:00 | 200-300 | +----+----------+---------+---------------------+-------------+Advertisements