- SQL - Discussion
- SQL - Useful Resources
- SQL - Useful Functions
- SQL - Quick Guide
- SQL - Questions and Answers
- SQL - Datatype Functions
- SQL - Conversion Functions
- SQL - JSON Functions
- SQL - Cursor Functions
- SQL - Logical Functions
- SQL - Statistical Functions
- SQL - Text & Image Functions
- SQL - Numeric Functions
- SQL - Aggregate Functions
- SQL - String Functions
- SQL - Date Functions
- SQL - Database Tuning
- SQL - IN vs EXISTS
- SQL - Group By vs Order By
- SQL - Common Table Expression
- SQL - Cursors
- SQL - Date & Time
- SQL - Auto Increment
- SQL - Using Sequences
- SQL - Handling Duplicates
- SQL - Sub Queries
- SQL - Transactions
- SQL - NULL Values
- SQL - Stored Procedures
- SQL - Default Constraint
- SQL - Check Constraint
- SQL - Null Functions
- SQL - Min & Max
- SQL - Hosting
- SQL - Injection
- SQL - Comments
- SQL - Wildcards
- SQL - Non-Clustered Index
- SQL - Clustered Index
- SQL - Unique Index
- SQL - Primary Key
- - 工会诉Join
- SQL - Inner Join
- SQL - Using Joins
- SQL - Aliases
- SQL - EXCEPT Operator
- SQL - INTERSECT Operator
- SQL - UNION vs UNION ALL
- SQL - UNION Operator
- SQL - BETWEEN Operator
- SQL - NOT NULL
- SQL - IS NOT NULL
- SQL - IS NULL
- SQL - NOT EQUAL
- SQL - NOT Operator
- SQL - CASE
- SQL - EXISTS Operator
- SQL - ANY, ALL Operators
- SQL - IN Operator
- SQL - LIKE Operator
- SQL - BOOLEAN (BIT) Operator
- SQL - AND & OR
- SQL - Having Clause
- SQL - Group By Clause
- SQL - Order By Clause
- SQL - Distinct Clause
- SQL - Top Clause
- SQL - Where Clause
- SQL - Rename Views
- SQL - Drop Views
- SQL - Update Views
- SQL - Create Views
- SQL - Sorting Results
- SQL - Delete Query
- SQL - Update Query
- SQL - Insert Into Select
- SQL - Select Into
- SQL - Select Query
- SQL - Insert Query
- SQL - Constraints
- SQL - Delete Table
- SQL - Drop Table
- SQL - Alter Tables
- SQL - Temporary Tables
- SQL - Clone Tables
- SQL - Truncate Table
- SQL - Rename Table
- SQL - Show Tables
- SQL - Create Table
- SQL - Backup Database
- SQL - Show Database
- SQL - Rename Database
- SQL - Select Database
- SQL - Drop Database
- SQL - Create Database
- SQL - Expressions
- SQL - Operators
- SQL - Data Types
- SQL - Syntax
- SQL - Databases
- SQL - RDBMS Concepts
- SQL - Overview
- SQL - Home
5. 图瓦卢
- 页: 1
- 页: 1
- 结构-创建指数
- 页: 1
- 页: 1
- 页: 1
- SQL - Foreign Key
- 文 件
- ∗ E/CN.6/2009/1。
- 页: 1
- 页: 1
- 文 件
- 页: 1
- 页: 1
- 文 件
- 页: 1
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
SQL - CREATE View
Creating a view is simply creating a virtual table using a query. A view is an SQL statement that is stored in the database with an associated name. It is actually a composition of a table in the form of a predefined SQL query.
A view can contain rows from an existing table (all or selected). A view can be created from one or many tables which depends on the written SQL query to create a view. Unless indexed, a view does not exist in a database.
Views, which are a type of virtual tables allow users to do the following −
Structure data in a way that users or classes of users find natural or intuitive.
Restrict access to the data in such a way that a user can see and (sometimes) modify exactly what they need and no more.
Summarize data from various tables which can be used to generate reports.
Syntax
Following is the syntax of the CREATE View statement −
CREATE VIEW view_name AS SELECT column1, column2..... FROM table_name WHERE [condition];
Example
Assume we have created a table named Customers using the CREATE TABLE statement using the following query −
CREATE TABLE CUSTOMERS( ID INT NOT NULL, NAME VARCHAR (20) NOT NULL, AGE INT NOT NULL, ADDRESS CHAR (25) , SALARY DECIMAL (18, 2), PRIMARY KEY (ID) );
Now, insert values into this table using the INSERT statement as follows −
INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) VALUES (1, Ramesh , 32, Ahmedabad , 2000.00 ); INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) VALUES (2, Khilan , 25, Delhi , 1500.00 ); INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) VALUES (3, kaushik , 23, Kota , 2000.00 ); INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) VALUES (4, Chaitap , 25, Mumbai , 6500.00 ); INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) VALUES (5, Hardik , 27, Bhopal , 8500.00 ); INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) VALUES (6, Komal , 22, MP , 4500.00 ); INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) VALUES (7, Muffy , 24, Indore , 10000.00 );
Following query creates a view based on the above created table −
Create view first_view AS SELECT * FROM customers;
Verification
You can verify the contents of a view using the select query as shown below −
SELECT * from first_view; +----+----------+-----+-----------+----------+ | ID | NAME | AGE | ADDRESS | SALARY | +----+----------+-----+-----------+----------+ | 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 2 | Khilan | 25 | Delhi | 1500.00 | | 3 | kaushik | 23 | Kota | 2000.00 | | 4 | Chaitap | 25 | Mumbai | 6500.00 | | 5 | Hardik | 27 | Bhopal | 8500.00 | | 6 | Komal | 22 | MP | 4500.00 | | 7 | Muffy | 24 | Indore | 10000.00 | +----+----------+-----+-----------+----------+
With Check Option
The WITH CHECK OPTION is a CREATE VIEW statement option. The purpose of the WITH CHECK OPTION is to ensure that all UPDATE and INSERTs satisfy the condition(s) in the view definition.
If they do not satisfy the condition(s), the UPDATE or INSERT returns an error. The following code block has an example of creating same view CUSTOMERS_VIEW with the WITH CHECK OPTION.
CREATE VIEW CUSTOMERS_VIEW AS SELECT name, age FROM CUSTOMERS WHERE age IS NOT NULL WITH CHECK OPTION;
The WITH CHECK OPTION in this case should deny the entry of any NULL values in the view s AGE column, because the view is defined by data that does not have a NULL value in the AGE column.
Using the WHERE clause
We can also create a view using the where clause as shown below −
CREATE VIEW test_view as SELECT * FROM customers where SALARY>3000;
Verification
Following are the contents of the above created view −
SELECT * FROM test_view; +----+----------+-----+---------+------------+ | ID | NAME | AGE | ADDRESS | SALARY | +----+----------+-----+---------+------------+ | 4 | Chaitap | 25 | Mumbai | 6500.0000 | | 5 | Hardik | 27 | Bhopal | 8500.0000 | | 6 | Komal | 22 | MP | 4500.0000 | | 7 | Muffy | 24 | Indore | 10000.0000 | +----+----------+-----+---------+------------+Advertisements