- Indirect Type ADC
- Direct Type ADCs
- DAC Example Problem
- Digital to Analog Converters
- Data Converters
- Voltage Regulators
- Phase Locked Loop Ic
- 555 Timer
- Waveform Generators
- Sinusoidal Oscillators
- Active Filters
- Clampers
- Clippers
- Rectifiers
- Log & Anti-Log Amplifiers
- Comparators
- Converters Of Electrical Quantities
- Differentiator & Integrator
- Arithmetic Circuits
- Op-Amp applications
- Basics Operational Amplifier
- Basics of Integrated Circuits Applications
- Home
Useful Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
DAC Example Problem
In the previous chapter, we discussed the two types of DACs. This chapter discusses an example problem based on R-2R ladder DAC.
Example
Let us find the value of analog output voltage of R-2R Ladder DAC for a binary input, $b_{2}b_{1}b_{0}$ = 100.
Circuit Diagram and its Simppfication
The circuit diagram of a 3-bit R-2R Ladder DAC when binary input, $b_{2}b_{1}b_{0}$ = 100 appped to it is shown in the following figure −
In the above circuit, there exists series and parallel combinations of resistors to the left of point A with respect to ground. So, we can replace that entire resistor network with a single resistor having resistance of $2ROmega$.
The simppfied circuit diagram is shown in the following figure −
We can replace the part of the network that is connected to the left of point B with respect to ground by using a Thevenin’s equivalent circuit. The modified circuit diagram is shown in the following figure −
In the above circuit, there exist a series combination of two resistors. Replace this combination with a single resistor. The final circuit diagram after simppfication is shown in the following figure −
Now, the above circuit diagram looks pke an inverting amppfier. It is having an input voltage of $-frac{V_{R}}{2}$ volts, input resistance of $2ROmega$ and feedback resistance of $2ROmega$.
The output voltage of the circuit shown above will be −
$$V_{0}=-frac{2R}{2R}left(-frac{V_{R}}{2} ight)$$
$$V_{0}=frac{V_{R}}{2}$$
Therefore, the output voltage of 3-bit R-2R Ladder DAC is $frac{V_{R}}{2}$ volts for a binary input, $b_{2}b_{1}b_{0}$ = 100.
Advertisements