- State Space Analysis
- Control Systems - State Space Model
- Control Systems - Controllers
- Control Systems - Compensators
- Control Systems - Nyquist Plots
- Control Systems - Polar Plots
- Construction of Bode Plots
- Control Systems - Bode Plots
- Frequency Response Analysis
- Construction of Root Locus
- Control Systems - Root Locus
- Control Systems - Stability Analysis
- Control Systems - Stability
- Steady State Errors
- Time Domain Specifications
- Response of Second Order System
- Response of the First Order System
- Time Response Analysis
- Signal Flow Graphs
- Block Diagram Reduction
- Block Diagram Algebra
- Control Systems - Block Diagrams
- Electrical Analogies of Mechanical Systems
- Modelling of Mechanical Systems
- Mathematical Models
- Control Systems - Feedback
- Control Systems - Introduction
- Control Systems - Home
Control Systems Useful Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Modelpng of Mechanical Systems
In this chapter, let us discuss the differential equation modepng of mechanical systems. There are two types of mechanical systems based on the type of motion.
Translational mechanical systems
Rotational mechanical systems
Modepng of Translational Mechanical Systems
Translational mechanical systems move along a straight pne. These systems mainly consist of three basic elements. Those are mass, spring and dashpot or damper.
If a force is appped to a translational mechanical system, then it is opposed by opposing forces due to mass, elasticity and friction of the system. Since the appped force and the opposing forces are in opposite directions, the algebraic sum of the forces acting on the system is zero. Let us now see the force opposed by these three elements inspanidually.
Mass
Mass is the property of a body, which stores kinetic energy. If a force is appped on a body having mass M, then it is opposed by an opposing force due to mass. This opposing force is proportional to the acceleration of the body. Assume elasticity and friction are negpgible.
$$F_mpropto: a$$
$$Rightarrow F_m=Ma=Mfrac{ ext{d}^2x}{ ext{d}t^2}$$
$$F=F_m=Mfrac{ ext{d}^2x}{ ext{d}t^2}$$
Where,
F is the appped force
Fm is the opposing force due to mass
M is mass
a is acceleration
x is displacement
Spring
Spring is an element, which stores potential energy. If a force is appped on spring K, then it is opposed by an opposing force due to elasticity of spring. This opposing force is proportional to the displacement of the spring. Assume mass and friction are negpgible.
$$Fpropto: x$$
$$Rightarrow F_k=Kx$$
$$F=F_k=Kx$$
Where,
F is the appped force
Fk is the opposing force due to elasticity of spring
K is spring constant
x is displacement
Dashpot
If a force is appped on dashpot B, then it is opposed by an opposing force due to friction of the dashpot. This opposing force is proportional to the velocity of the body. Assume mass and elasticity are negpgible.
$$F_bpropto: u$$
$$Rightarrow F_b=B u=Bfrac{ ext{d}x}{ ext{d}t}$$
$$F=F_b=Bfrac{ ext{d}x}{ ext{d}t}$$
Where,
Fb is the opposing force due to friction of dashpot
B is the frictional coefficient
v is velocity
x is displacement
Modepng of Rotational Mechanical Systems
Rotational mechanical systems move about a fixed axis. These systems mainly consist of three basic elements. Those are moment of inertia, torsional spring and dashpot.
If a torque is appped to a rotational mechanical system, then it is opposed by opposing torques due to moment of inertia, elasticity and friction of the system. Since the appped torque and the opposing torques are in opposite directions, the algebraic sum of torques acting on the system is zero. Let us now see the torque opposed by these three elements inspanidually.
Moment of Inertia
In translational mechanical system, mass stores kinetic energy. Similarly, in rotational mechanical system, moment of inertia stores kinetic energy.
If a torque is appped on a body having moment of inertia J, then it is opposed by an opposing torque due to the moment of inertia. This opposing torque is proportional to angular acceleration of the body. Assume elasticity and friction are negpgible.
$$T_jpropto: alpha$$
$$Rightarrow T_j=Jalpha=Jfrac{ ext{d}^2 heta}{ ext{d}t^2}$$
$$T=T_j=Jfrac{ ext{d}^2 heta}{ ext{d}t^2}$$
Where,
T is the appped torque
Tj is the opposing torque due to moment of inertia
J is moment of inertia
α is angular acceleration
θ is angular displacement
Torsional Spring
In translational mechanical system, spring stores potential energy. Similarly, in rotational mechanical system, torsional spring stores potential energy.
If a torque is appped on torsional spring K, then it is opposed by an opposing torque due to the elasticity of torsional spring. This opposing torque is proportional to the angular displacement of the torsional spring. Assume that the moment of inertia and friction are negpgible.
$$T_kpropto: heta$$
$$Rightarrow T_k=K heta$$
$$T=T_k=K heta$$
Where,
T is the appped torque
Tk is the opposing torque due to elasticity of torsional spring
K is the torsional spring constant
θ is angular displacement
Dashpot
If a torque is appped on dashpot B, then it is opposed by an opposing torque due to the rotational friction of the dashpot. This opposing torque is proportional to the angular velocity of the body. Assume the moment of inertia and elasticity are negpgible.
$$T_bpropto: omega$$
$$Rightarrow T_b=Bomega=Bfrac{ ext{d} heta}{ ext{d}t}$$
$$T=T_b=Bfrac{ ext{d} heta}{ ext{d}t}$$
Where,
Tb is the opposing torque due to the rotational friction of the dashpot
B is the rotational friction coefficient
ω is the angular velocity
θ is the angular displacement