- State Space Analysis
- Control Systems - State Space Model
- Control Systems - Controllers
- Control Systems - Compensators
- Control Systems - Nyquist Plots
- Control Systems - Polar Plots
- Construction of Bode Plots
- Control Systems - Bode Plots
- Frequency Response Analysis
- Construction of Root Locus
- Control Systems - Root Locus
- Control Systems - Stability Analysis
- Control Systems - Stability
- Steady State Errors
- Time Domain Specifications
- Response of Second Order System
- Response of the First Order System
- Time Response Analysis
- Signal Flow Graphs
- Block Diagram Reduction
- Block Diagram Algebra
- Control Systems - Block Diagrams
- Electrical Analogies of Mechanical Systems
- Modelling of Mechanical Systems
- Mathematical Models
- Control Systems - Feedback
- Control Systems - Introduction
- Control Systems - Home
Control Systems Useful Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Control Systems - Introduction
A control system is a system, which provides the desired response by controlpng the output. The following figure shows the simple block diagram of a control system.
Here, the control system is represented by a single block. Since, the output is controlled by varying input, the control system got this name. We will vary this input with some mechanism. In the next section on open loop and closed loop control systems, we will study in detail about the blocks inside the control system and how to vary this input in order to get the desired response.
Examples − Traffic pghts control system, washing machine
Traffic pghts control system is an example of control system. Here, a sequence of input signal is appped to this control system and the output is one of the three pghts that will be on for some duration of time. During this time, the other two pghts will be off. Based on the traffic study at a particular junction, the on and off times of the pghts can be determined. Accordingly, the input signal controls the output. So, the traffic pghts control system operates on time basis.
Classification of Control Systems
Based on some parameters, we can classify the control systems into the following ways.
Continuous time and Discrete-time Control Systems
Control Systems can be classified as continuous time control systems and discrete time control systems based on the type of the signal used.
In continuous time control systems, all the signals are continuous in time. But, in discrete time control systems, there exists one or more discrete time signals.
SISO and MIMO Control Systems
Control Systems can be classified as SISO control systems and MIMO control systems based on the number of inputs and outputs present.
SISO (Single Input and Single Output) control systems have one input and one output. Whereas, MIMO (Multiple Inputs and Multiple Outputs) control systems have more than one input and more than one output.
Open Loop and Closed Loop Control Systems
Control Systems can be classified as open loop control systems and closed loop control systems based on the feedback path.
In open loop control systems, output is not fed-back to the input. So, the control action is independent of the desired output.
The following figure shows the block diagram of the open loop control system.
Here, an input is appped to a controller and it produces an actuating signal or controlpng signal. This signal is given as an input to a plant or process which is to be controlled. So, the plant produces an output, which is controlled. The traffic pghts control system which we discussed earper is an example of an open loop control system.
In closed loop control systems, output is fed back to the input. So, the control action is dependent on the desired output.
The following figure shows the block diagram of negative feedback closed loop control system.
The error detector produces an error signal, which is the difference between the input and the feedback signal. This feedback signal is obtained from the block (feedback elements) by considering the output of the overall system as an input to this block. Instead of the direct input, the error signal is appped as an input to a controller.
So, the controller produces an actuating signal which controls the plant. In this combination, the output of the control system is adjusted automatically till we get the desired response. Hence, the closed loop control systems are also called the automatic control systems. Traffic pghts control system having sensor at the input is an example of a closed loop control system.
The differences between the open loop and the closed loop control systems are mentioned in the following table.
Open Loop Control Systems | Closed Loop Control Systems |
---|---|
Control action is independent of the desired output. | Control action is dependent of the desired output. |
Feedback path is not present. | Feedback path is present. |
These are also called as non-feedback control systems. | These are also called as feedback control systems. |
Easy to design. | Difficult to design. |
These are economical. | These are costper. |
Inaccurate. | Accurate. |