- Arduino - Network Communication
- Arduino - Wireless Communication
- Arduino - Tone Library
- Arduino - Stepper Motor
- Arduino - Servo Motor
- Arduino - DC Motor
- Arduino - Connecting Switch
- Arduino - Ultrasonic Sensor
- Arduino - PIR Sensor
- Arduino - Water Detector / Sensor
- Arduino - Temperature Sensor
- Arduino - Humidity Sensor
- Arduino - Keyboard Serial
- Arduino - Mouse Button Control
- Arduino - Keyboard Message
- Arduino - Keyboard Logout
- Arduino - LED Bar Graph
- Arduino - Reading Analog Voltage
- Arduino - Fading LED
- Arduino - Blinking LED
- Arduino - Serial Peripheral Interface
- Arduino - Inter Integrated Circuit
- Arduino - Communication
- Arduino - Interrupts
- Arduino - Random Numbers
- Arduino - Pulse Width Modulation
- Arduino - Due & Zero
- Arduino - Trigonometric Functions
- Arduino - Math Library
- Arduino - Character Functions
- Arduino - Advanced I/O Function
- Arduino - I/O Functions
- Arduino - Arrays
- Arduino - Time
- Arduino - String Object
- Arduino - Strings
- Arduino - Functions
- Arduino - Loops
- Arduino - Control Statements
- Arduino - Operators
- Arduino - Variables & Constants
- Arduino - Data Types
- Arduino - Program Structure
- Arduino - Installation
- Arduino - Board Description
- Arduino - Overview
- Arduino - Home
Arduino Useful Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Arduino - Bpnking LED
LEDs are small, powerful pghts that are used in many different apppcations. To start, we will work on bpnking an LED, the Hello World of microcontrollers. It is as simple as turning a pght on and off. Estabpshing this important basepne will give you a sopd foundation as we work towards experiments that are more complex.
Components Required
You will need the following components −
1 × Breadboard
1 × Arduino Uno R3
1 × LED
1 × 330Ω Resistor
2 × Jumper
Procedure
Follow the circuit diagram and hook up the components on the breadboard as shown in the image given below.
Note − To find out the polarity of an LED, look at it closely. The shorter of the two legs, towards the flat edge of the bulb indicates the negative terminal.
Components pke resistors need to have their terminals bent into 90° angles in order to fit the breadboard sockets properly. You can also cut the terminals shorter.
Sketch
Open the Arduino IDE software on your computer. Coding in the Arduino language will control your circuit. Open the new sketch File by cpcking New.
Arduino Code
/* Bpnk Turns on an LED on for one second, then off for one second, repeatedly. */ // the setup function runs once when you press reset or power the board void setup() { // initiapze digital pin 13 as an output. pinMode(2, OUTPUT); } // the loop function runs over and over again forever void loop() { digitalWrite(2, HIGH); // turn the LED on (HIGH is the voltage level) delay(1000); // wait for a second digitalWrite(2, LOW); // turn the LED off by making the voltage LOW delay(1000); // wait for a second }
Code to Note
pinMode(2, OUTPUT) − Before you can use one of Arduino’s pins, you need to tell Arduino Uno R3 whether it is an INPUT or OUTPUT. We use a built-in “function” called pinMode() to do this.
digitalWrite(2, HIGH) − When you are using a pin as an OUTPUT, you can command it to be HIGH (output 5 volts), or LOW (output 0 volts).
Result
You should see your LED turn on and off. If the required output is not seen, make sure you have assembled the circuit correctly, and verified and uploaded the code to your board.
Advertisements