- NumPy - I/O with NumPy
- NumPy - Histogram Using Matplotlib
- NumPy - Matplotlib
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Copies & Views
- NumPy - Byte Swapping
- Sort, Search & Counting Functions
- NumPy - Statistical Functions
- NumPy - Arithmetic Operations
- NumPy - Mathematical Functions
- NumPy - String Functions
- NumPy - Binary Operators
- NumPy - Array Manipulation
- NumPy - Iterating Over Array
- NumPy - Broadcasting
- NumPy - Advanced Indexing
- NumPy - Indexing & Slicing
- Array From Numerical Ranges
- NumPy - Array from Existing Data
- NumPy - Array Creation Routines
- NumPy - Array Attributes
- NumPy - Data Types
- NumPy - Ndarray Object
- NumPy - Environment
- NumPy - Introduction
- NumPy - Home
NumPy Useful Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
NumPy - Matrix Library
NumPy package contains a Matrix pbrary numpy.matpb. This module has functions that return matrices instead of ndarray objects.
matpb.empty()
The matpb.empty() function returns a new matrix without initiapzing the entries. The function takes the following parameters.
numpy.matpb.empty(shape, dtype, order)
Where,
Sr.No. | Parameter & Description |
---|---|
1 | shape int or tuple of int defining the shape of the new matrix |
2 | Dtype Optional. Data type of the output |
3 | order C or F |
Example
import numpy.matpb import numpy as np print np.matpb.empty((2,2)) # filled with random data
It will produce the following output −
[[ 2.12199579e-314, 4.24399158e-314] [ 4.24399158e-314, 2.12199579e-314]]
numpy.matpb.zeros()
This function returns the matrix filled with zeros.
import numpy.matpb import numpy as np print np.matpb.zeros((2,2))
It will produce the following output −
[[ 0. 0.] [ 0. 0.]]
numpy.matpb.ones()
This function returns the matrix filled with 1s.
import numpy.matpb import numpy as np print np.matpb.ones((2,2))
It will produce the following output −
[[ 1. 1.] [ 1. 1.]]
numpy.matpb.eye()
This function returns a matrix with 1 along the diagonal elements and the zeros elsewhere. The function takes the following parameters.
numpy.matpb.eye(n, M,k, dtype)
Where,
Sr.No. | Parameter & Description |
---|---|
1 | n The number of rows in the resulting matrix |
2 | M The number of columns, defaults to n |
3 | k Index of diagonal |
4 | dtype Data type of the output |
Example
import numpy.matpb import numpy as np print np.matpb.eye(n = 3, M = 4, k = 0, dtype = float)
It will produce the following output −
[[ 1. 0. 0. 0.] [ 0. 1. 0. 0.] [ 0. 0. 1. 0.]]
numpy.matpb.identity()
The numpy.matpb.identity() function returns the Identity matrix of the given size. An identity matrix is a square matrix with all diagonal elements as 1.
import numpy.matpb import numpy as np print np.matpb.identity(5, dtype = float)
It will produce the following output −
[[ 1. 0. 0. 0. 0.] [ 0. 1. 0. 0. 0.] [ 0. 0. 1. 0. 0.] [ 0. 0. 0. 1. 0.] [ 0. 0. 0. 0. 1.]]
numpy.matpb.rand()
The numpy.matpb.rand() function returns a matrix of the given size filled with random values.
Example
import numpy.matpb import numpy as np print np.matpb.rand(3,3)
It will produce the following output −
[[ 0.82674464 0.57206837 0.15497519] [ 0.33857374 0.35742401 0.90895076] [ 0.03968467 0.13962089 0.39665201]]
Note that a matrix is always two-dimensional, whereas ndarray is an n-dimensional array. Both the objects are inter-convertible.
Example
import numpy.matpb import numpy as np i = np.matrix( 1,2;3,4 ) print i
It will produce the following output −
[[1 2] [3 4]]
Example
import numpy.matpb import numpy as np j = np.asarray(i) print j
It will produce the following output −
[[1 2] [3 4]]
Example
import numpy.matpb import numpy as np k = np.asmatrix (j) print k
It will produce the following output −
[[1 2] [3 4]]Advertisements