English 中文(简体)
NumPy - Mathematical Functions
  • 时间:2024-12-22

NumPy - Mathematical Functions


Previous Page Next Page  

Quite understandably, NumPy contains a large number of various mathematical operations. NumPy provides standard trigonometric functions, functions for arithmetic operations, handpng complex numbers, etc.

Trigonometric Functions

NumPy has standard trigonometric functions which return trigonometric ratios for a given angle in radians.

Example

import numpy as np 
a = np.array([0,30,45,60,90]) 

print  Sine of different angles:  
# Convert to radians by multiplying with pi/180 
print np.sin(a*np.pi/180) 
print  
   

print  Cosine values for angles in array:  
print np.cos(a*np.pi/180) 
print  
   

print  Tangent values for given angles:  
print np.tan(a*np.pi/180) 

Here is its output −

Sine of different angles:
[ 0.          0.5         0.70710678  0.8660254   1.        ]

Cosine values for angles in array:
[  1.00000000e+00   8.66025404e-01   7.07106781e-01   5.00000000e-01
   6.12323400e-17]                                                            

Tangent values for given angles:
[  0.00000000e+00   5.77350269e-01   1.00000000e+00   1.73205081e+00
   1.63312394e+16]

arcsin, arcos, and arctan functions return the trigonometric inverse of sin, cos, and tan of the given angle. The result of these functions can be verified by numpy.degrees() function by converting radians to degrees.

Example

import numpy as np 
a = np.array([0,30,45,60,90]) 

print  Array containing sine values:  
sin = np.sin(a*np.pi/180) 
print sin 
print  
   

print  Compute sine inverse of angles. Returned values are in radians.  
inv = np.arcsin(sin) 
print inv 
print  
   

print  Check result by converting to degrees:  
print np.degrees(inv) 
print  
   

print  arccos and arctan functions behave similarly:  
cos = np.cos(a*np.pi/180) 
print cos 
print  
   

print  Inverse of cos:  
inv = np.arccos(cos) 
print inv 
print  
   

print  In degrees:  
print np.degrees(inv) 
print  
   

print  Tan function:  
tan = np.tan(a*np.pi/180) 
print tan
print  
   

print  Inverse of tan:  
inv = np.arctan(tan) 
print inv 
print  
   

print  In degrees:  
print np.degrees(inv) 

Its output is as follows −

Array containing sine values:
[ 0.          0.5         0.70710678  0.8660254   1.        ]

Compute sine inverse of angles. Returned values are in radians.
[ 0.          0.52359878  0.78539816  1.04719755  1.57079633] 

Check result by converting to degrees:
[  0.  30.  45.  60.  90.]

arccos and arctan functions behave similarly:
[  1.00000000e+00   8.66025404e-01   7.07106781e-01   5.00000000e-01          
   6.12323400e-17] 

Inverse of cos:
[ 0.          0.52359878  0.78539816  1.04719755  1.57079633] 

In degrees:
[  0.  30.  45.  60.  90.] 

Tan function:
[  0.00000000e+00   5.77350269e-01   1.00000000e+00   1.73205081e+00          
   1.63312394e+16]

Inverse of tan:
[ 0.          0.52359878  0.78539816  1.04719755  1.57079633]

In degrees:
[  0.  30.  45.  60.  90.]

Functions for Rounding

numpy.around()

This is a function that returns the value rounded to the desired precision. The function takes the following parameters.

numpy.around(a,decimals)

Where,

Sr.No. Parameter & Description
1

a

Input data

2

decimals

The number of decimals to round to. Default is 0. If negative, the integer is rounded to position to the left of the decimal point

Example

import numpy as np 
a = np.array([1.0,5.55, 123, 0.567, 25.532]) 

print  Original array:  
print a 
print  
   

print  After rounding:  
print np.around(a) 
print np.around(a, decimals = 1) 
print np.around(a, decimals = -1)

It produces the following output −

Original array:                                                               
[   1.       5.55   123.       0.567   25.532] 

After rounding:                                                               
[   1.    6.   123.    1.   26. ]                                               
[   1.    5.6  123.    0.6  25.5]                                          
[   0.    10.  120.    0.   30. ]

numpy.floor()

This function returns the largest integer not greater than the input parameter. The floor of the scalar x is the largest integer i, such that i <= x. Note that in Python, flooring always is rounded away from 0.

Example

import numpy as np 
a = np.array([-1.7, 1.5, -0.2, 0.6, 10]) 

print  The given array:  
print a 
print  
   

print  The modified array:  
print np.floor(a)

It produces the following output −

The given array:                                                              
[ -1.7   1.5  -0.2   0.6  10. ]

The modified array:                                                           
[ -2.   1.  -1.   0.  10.]

numpy.ceil()

The ceil() function returns the ceipng of an input value, i.e. the ceil of the scalar x is the smallest integer i, such that i >= x.

Example

import numpy as np 
a = np.array([-1.7, 1.5, -0.2, 0.6, 10]) 

print  The given array:  
print a 
print  
   

print  The modified array:  
print np.ceil(a)

It will produce the following output −

The given array:                                                              
[ -1.7   1.5  -0.2   0.6  10. ]

The modified array:                                                           
[ -1.   2.  -0.   1.  10.]
Advertisements