- NumPy - I/O with NumPy
- NumPy - Histogram Using Matplotlib
- NumPy - Matplotlib
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Copies & Views
- NumPy - Byte Swapping
- Sort, Search & Counting Functions
- NumPy - Statistical Functions
- NumPy - Arithmetic Operations
- NumPy - Mathematical Functions
- NumPy - String Functions
- NumPy - Binary Operators
- NumPy - Array Manipulation
- NumPy - Iterating Over Array
- NumPy - Broadcasting
- NumPy - Advanced Indexing
- NumPy - Indexing & Slicing
- Array From Numerical Ranges
- NumPy - Array from Existing Data
- NumPy - Array Creation Routines
- NumPy - Array Attributes
- NumPy - Data Types
- NumPy - Ndarray Object
- NumPy - Environment
- NumPy - Introduction
- NumPy - Home
NumPy Useful Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
NumPy - Arithmetic Operations
Input arrays for performing arithmetic operations such as add(), subtract(), multiply(), and spanide() must be either of the same shape or should conform to array broadcasting rules.
Example
import numpy as np a = np.arange(9, dtype = np.float_).reshape(3,3) print First array: print a print print Second array: b = np.array([10,10,10]) print b print print Add the two arrays: print np.add(a,b) print print Subtract the two arrays: print np.subtract(a,b) print print Multiply the two arrays: print np.multiply(a,b) print print Divide the two arrays: print np.spanide(a,b)
It will produce the following output −
First array: [[ 0. 1. 2.] [ 3. 4. 5.] [ 6. 7. 8.]] Second array: [10 10 10] Add the two arrays: [[ 10. 11. 12.] [ 13. 14. 15.] [ 16. 17. 18.]] Subtract the two arrays: [[-10. -9. -8.] [ -7. -6. -5.] [ -4. -3. -2.]] Multiply the two arrays: [[ 0. 10. 20.] [ 30. 40. 50.] [ 60. 70. 80.]] Divide the two arrays: [[ 0. 0.1 0.2] [ 0.3 0.4 0.5] [ 0.6 0.7 0.8]]
Let us now discuss some of the other important arithmetic functions available in NumPy.
numpy.reciprocal()
This function returns the reciprocal of argument, element-wise. For elements with absolute values larger than 1, the result is always 0 because of the way in which Python handles integer spanision. For integer 0, an overflow warning is issued.
Example
import numpy as np a = np.array([0.25, 1.33, 1, 0, 100]) print Our array is: print a print print After applying reciprocal function: print np.reciprocal(a) print b = np.array([100], dtype = int) print The second array is: print b print print After applying reciprocal function: print np.reciprocal(b)
It will produce the following output −
Our array is: [ 0.25 1.33 1. 0. 100. ] After applying reciprocal function: main.py:9: RuntimeWarning: spanide by zero encountered in reciprocal print np.reciprocal(a) [ 4. 0.7518797 1. inf 0.01 ] The second array is: [100] After applying reciprocal function: [0]
numpy.power()
This function treats elements in the first input array as base and returns it raised to the power of the corresponding element in the second input array.
import numpy as np a = np.array([10,100,1000]) print Our array is: print a print print Applying power function: print np.power(a,2) print print Second array: b = np.array([1,2,3]) print b print print Applying power function again: print np.power(a,b)
It will produce the following output −
Our array is: [ 10 100 1000] Applying power function: [ 100 10000 1000000] Second array: [1 2 3] Applying power function again: [ 10 10000 1000000000]
numpy.mod()
This function returns the remainder of spanision of the corresponding elements in the input array. The function numpy.remainder() also produces the same result.
import numpy as np a = np.array([10,20,30]) b = np.array([3,5,7]) print First array: print a print print Second array: print b print print Applying mod() function: print np.mod(a,b) print print Applying remainder() function: print np.remainder(a,b)
It will produce the following output −
First array: [10 20 30] Second array: [3 5 7] Applying mod() function: [1 0 2] Applying remainder() function: [1 0 2]
The following functions are used to perform operations on array with complex numbers.
numpy.real() − returns the real part of the complex data type argument.
numpy.imag() − returns the imaginary part of the complex data type argument.
numpy.conj() − returns the complex conjugate, which is obtained by changing the sign of the imaginary part.
numpy.angle() − returns the angle of the complex argument. The function has degree parameter. If true, the angle in the degree is returned, otherwise the angle is in radians.
import numpy as np a = np.array([-5.6j, 0.2j, 11. , 1+1j]) print Our array is: print a print print Applying real() function: print np.real(a) print print Applying imag() function: print np.imag(a) print print Applying conj() function: print np.conj(a) print print Applying angle() function: print np.angle(a) print print Applying angle() function again (result in degrees) print np.angle(a, deg = True)
It will produce the following output −
Our array is: [ 0.-5.6j 0.+0.2j 11.+0.j 1.+1.j ] Applying real() function: [ 0. 0. 11. 1.] Applying imag() function: [-5.6 0.2 0. 1. ] Applying conj() function: [ 0.+5.6j 0.-0.2j 11.-0.j 1.-1.j ] Applying angle() function: [-1.57079633 1.57079633 0. 0.78539816] Applying angle() function again (result in degrees) [-90. 90. 0. 45.]Advertisements