- PyTorch - Discussion
- PyTorch - Useful Resources
- PyTorch - Quick Guide
- PyTorch - Recursive Neural Networks
- PyTorch - Word Embedding
- Sequence Processing with Convents
- PyTorch - Visualization of Convents
- PyTorch - Feature Extraction in Convents
- Training a Convent from Scratch
- PyTorch - Introduction to Convents
- PyTorch - Datasets
- PyTorch - Recurrent Neural Network
- PyTorch - Convolutional Neural Network
- PyTorch - Linear Regression
- PyTorch - Loading Data
- PyTorch - Terminologies
- Neural Networks to Functional Blocks
- Implementing First Neural Network
- Machine Learning vs. Deep Learning
- Universal Workflow of Machine Learning
- PyTorch - Neural Network Basics
- Mathematical Building Blocks of Neural Networks
- PyTorch - Installation
- PyTorch - Introduction
- PyTorch - Home
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
PyTorch - Sequence Processing with Convents
In this chapter, we propose an alternative approach which instead repes on a single 2D convolutional neural network across both sequences. Each layer of our network re-codes source tokens on the basis of the output sequence produced so far. Attention-pke properties are therefore pervasive throughout the network.
Here, we will focus on creating the sequential network with specific poopng from the values included in dataset. This process is also best appped in “Image Recognition Module”.
Following steps are used to create a sequence processing model with convents using PyTorch −
Step 1
Import the necessary modules for performance of sequence processing using convents.
import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPoopng2D import numpy as np
Step 2
Perform the necessary operations to create a pattern in respective sequence using the below code −
batch_size = 128 num_classes = 10 epochs = 12 # input image dimensions img_rows, img_cols = 28, 28 # the data, sppt between train and test sets (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(60000,28,28,1) x_test = x_test.reshape(10000,28,28,1) print( x_train shape: , x_train.shape) print(x_train.shape[0], train samples ) print(x_test.shape[0], test samples ) y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes)
Step 3
Compile the model and fit the pattern in the mentioned conventional neural network model as shown below −
model.compile(loss = keras.losses.categorical_crossentropy, optimizer = keras.optimizers.Adadelta(), metrics = [ accuracy ]) model.fit(x_train, y_train, batch_size = batch_size, epochs = epochs, verbose = 1, vapdation_data = (x_test, y_test)) score = model.evaluate(x_test, y_test, verbose = 0) print( Test loss: , score[0]) print( Test accuracy: , score[1])
The output generated is as follows −
Advertisements