PyTorch Tutorial
Selected Reading
- PyTorch - Discussion
- PyTorch - Useful Resources
- PyTorch - Quick Guide
- PyTorch - Recursive Neural Networks
- PyTorch - Word Embedding
- Sequence Processing with Convents
- PyTorch - Visualization of Convents
- PyTorch - Feature Extraction in Convents
- Training a Convent from Scratch
- PyTorch - Introduction to Convents
- PyTorch - Datasets
- PyTorch - Recurrent Neural Network
- PyTorch - Convolutional Neural Network
- PyTorch - Linear Regression
- PyTorch - Loading Data
- PyTorch - Terminologies
- Neural Networks to Functional Blocks
- Implementing First Neural Network
- Machine Learning vs. Deep Learning
- Universal Workflow of Machine Learning
- PyTorch - Neural Network Basics
- Mathematical Building Blocks of Neural Networks
- PyTorch - Installation
- PyTorch - Introduction
- PyTorch - Home
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Training a Convent from Scratch
PyTorch - Training a Convent from Scratch
In this chapter, we will focus on creating a convent from scratch. This infers in creating the respective convent or sample neural network with torch.
Step 1
Create a necessary class with respective parameters. The parameters include weights with random value.
class Neural_Network(nn.Module): def __init__(self, ): super(Neural_Network, self).__init__() self.inputSize = 2 self.outputSize = 1 self.hiddenSize = 3 # weights self.W1 = torch.randn(self.inputSize, self.hiddenSize) # 3 X 2 tensor self.W2 = torch.randn(self.hiddenSize, self.outputSize) # 3 X 1 tensor
Step 2
Create a feed forward pattern of function with sigmoid functions.
def forward(self, X): self.z = torch.matmul(X, self.W1) # 3 X 3 ".dot" does not broadcast in PyTorch self.z2 = self.sigmoid(self.z) # activation function self.z3 = torch.matmul(self.z2, self.W2) o = self.sigmoid(self.z3) # final activation function return o def sigmoid(self, s): return 1 / (1 + torch.exp(-s)) def sigmoidPrime(self, s): # derivative of sigmoid return s * (1 - s) def backward(self, X, y, o): self.o_error = y - o # error in output self.o_delta = self.o_error * self.sigmoidPrime(o) # derivative of sig to error self.z2_error = torch.matmul(self.o_delta, torch.t(self.W2)) self.z2_delta = self.z2_error * self.sigmoidPrime(self.z2) self.W1 + = torch.matmul(torch.t(X), self.z2_delta) self.W2 + = torch.matmul(torch.t(self.z2), self.o_delta)
Step 3
Create a training and prediction model as mentioned below −
def train(self, X, y): # forward + backward pass for training o = self.forward(X) self.backward(X, y, o) def saveWeights(self, model): # Implement PyTorch internal storage functions torch.save(model, "NN") # you can reload model with all the weights and so forth with: # torch.load("NN") def predict(self): print ("Predicted data based on trained weights: ") print ("Input (scaled): " + str(xPredicted)) print ("Output: " + str(self.forward(xPredicted)))Advertisements