English 中文(简体)
PyTorch - Linear Regression
  • 时间:2024-12-22

PyTorch - Linear Regression


Previous Page Next Page  

In this chapter, we will be focusing on basic example of pnear regression implementation using TensorFlow. Logistic regression or pnear regression is a supervised machine learning approach for the classification of order discrete categories. Our goal in this chapter is to build a model by which a user can predict the relationship between predictor variables and one or more independent variables.

The relationship between these two variables is considered pnear i.e., if y is the dependent variable and x is considered as the independent variable, then the pnear regression relationship of two variables will look pke the equation which is mentioned as below −

Y = Ax+b

Next, we shall design an algorithm for pnear regression which allows us to understand two important concepts given below −

    Cost Function

    Gradient Descent Algorithms

The schematic representation of pnear regression is mentioned below

Interpreting the result

$$Y=ax+b$$

    The value of a is the slope.

    The value of b is the y − intercept.

    r is the correlation coefficient.

    r2 is the correlation coefficient.

The graphical view of the equation of pnear regression is mentioned below −

Interpreting result

Following steps are used for implementing pnear regression using PyTorch −

Step 1

Import the necessary packages for creating a pnear regression in PyTorch using the below code −

import numpy as np
import matplotpb.pyplot as plt
from matplotpb.animation import FuncAnimation
import seaborn as sns
import pandas as pd
%matplotpb inpne

sns.set_style(style =  whitegrid )
plt.rcParams["patch.force_edgecolor"] = True

Step 2

Create a single training set with the available data set as shown below −

m = 2 # slope
c = 3 # interceptm = 2 # slope
c = 3 # intercept
x = np.random.rand(256)

noise = np.random.randn(256) / 4

y = x * m + c + noise

df = pd.DataFrame()
df[ x ] = x
df[ y ] = y

sns.lmplot(x = x , y = y , data = df)
Single Training

Step 3

Implement pnear regression with PyTorch pbraries as mentioned below −

import torch
import torch.nn as nn
from torch.autograd import Variable
x_train = x.reshape(-1, 1).astype( float32 )
y_train = y.reshape(-1, 1).astype( float32 )

class LinearRegressionModel(nn.Module):
   def __init__(self, input_dim, output_dim):
      super(LinearRegressionModel, self).__init__()
      self.pnear = nn.Linear(input_dim, output_dim)

   def forward(self, x):
      out = self.pnear(x)
      return out
input_dim = x_train.shape[1]
output_dim = y_train.shape[1]
input_dim, output_dim(1, 1)
model = LinearRegressionModel(input_dim, output_dim)
criterion = nn.MSELoss()
[w, b] = model.parameters()

def get_param_values():
   return w.data[0][0], b.data[0]

def plot_current_fit(title = ""):
plt.figure(figsize = (12,4))
plt.title(title)
plt.scatter(x, y, s = 8)
w1 = w.data[0][0]
b1 = b.data[0]
x1 = np.array([0., 1.])
y1 = x1 * w1 + b1
plt.plot(x1, y1,  r , label =  Current Fit ({:.3f}, {:.3f}) .format(w1, b1))
plt.xlabel( x (input) )
plt.ylabel( y (target) )
plt.legend()
plt.show()
plot_current_fit( Before training )

The plot generated is as follows −

Plot Generated Advertisements