- DIP - Computer Vision and Graphics
- DIP - Optical Character Recognition
- DIP - JPEG compression
- DIP - Introduction to Color Spaces
- DIP - High Pass vs Low Pass Filters
- DIP - Convolution theorm
- DIP - Fourier series and Transform
- DIP - Frequency Domain Analysis
- DIP - Laplacian Operator
- DIP - Krisch Compass Mask
- DIP - Robinson Compass Mask
- DIP - Sobel operator
- DIP - Prewitt Operator
- DIP - Concept of Edge Detection
- DIP - Concept of Blurring
- DIP - Concept of Masks
- DIP - Concept of convolution
- DIP - Gray Level Transformations
- DIP - Histogram Equalization
- DIP - Introduction to Probability
- DIP - Histogram Stretching
- DIP - Histogram Sliding
- DIP - Image Transformations
- DIP - Brightness and Contrast
- DIP - Histograms Introduction
- DIP - Concept of Dithering
- DIP - ISO Preference curves
- DIP - Concept of Quantization
- DIP - Gray Level Resolution
- DIP - Pixels Dots and Lines per inch
- DIP - Spatial Resolution
- DIP - Zooming methods
- DIP - Concept of Zooming
- DIP - Pixel Resolution
- DIP - Concept of Sampling
- DIP - Grayscale to RGB Conversion
- DIP - Color Codes Conversion
- DIP - Types of Images
- DIP - Concept of Bits Per Pixel
- DIP - Perspective Transformation
- DIP - Concept of Pixel
- DIP - Camera Mechanism
- DIP - Image Formation on Camera
- DIP - Concept of Dimensions
- DIP - Applications and Usage
- DIP - History of Photography
- DIP - Signal and System Introduction
- DIP - Image Processing Introduction
- DIP - Home
DIP Useful Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Introduction to Color Spaces
In this tutorial, we are going to talk about color spaces.
What are color spaces?
Color spaces are different types of color modes, used in image processing and signals and system for various purposes. Some of the common color spaces are:
RGB
CMY’K
Y’UV
YIQ
Y’CbCr
HSV
RGB
RGB is the most widely used color space, and we have already discussed it in the past tutorials. RGB stands for red green and blue.
What RGB model states, that each color image is actually formed of three different images. Red image, Blue image, and black image. A normal grayscale image can be defined by only one matrix, but a color image is actually composed of three different matrices.
One color image matrix = red matrix + blue matrix + green matrix
This can be best seen in this example below.
Apppcations of RGB
The common apppcations of RGB model are
Cathode ray tube (CRT)
Liquid crystal display (LCD)
Plasma Display or LED display such as a television
A compute monitor or a large scale screen
CMYK
RGB to CMY conversion
The conversion from RGB to CMY is done using this method.
Consider you have an color image , means you have three different arrays of RED, GREEN and BLUE. Now if you want to convert it into CMY, here’s what you have to do. You have to subtract it by the maximum number of levels – 1. Each matrix is subtracted and its respective CMY matrix is filled with result.
Y’UV
Y’UV defines a color space in terms of one luma (Y’) and two chrominance (UV) components. The Y’UV color model is used in the following composite color video standards.
NTSC ( National Television System Committee)
PAL (Phase Alternating Line)
SECAM (Sequential couleur a amemoire, French for “sequential color with memory)
Y’CbCr
Y’CbCr color model contains Y’, the luma component and cb and cr are the blue-difference and red difference chroma components.
It is not an absolute color space. It is mainly used for digital systems
Its common apppcations include JPEG and MPEG compression.
Y’UV is often used as the term for Y’CbCr, however they are totally different formats. The main difference between these two is that the former is analog while the later is digital.
Advertisements