- DIP - Computer Vision and Graphics
- DIP - Optical Character Recognition
- DIP - JPEG compression
- DIP - Introduction to Color Spaces
- DIP - High Pass vs Low Pass Filters
- DIP - Convolution theorm
- DIP - Fourier series and Transform
- DIP - Frequency Domain Analysis
- DIP - Laplacian Operator
- DIP - Krisch Compass Mask
- DIP - Robinson Compass Mask
- DIP - Sobel operator
- DIP - Prewitt Operator
- DIP - Concept of Edge Detection
- DIP - Concept of Blurring
- DIP - Concept of Masks
- DIP - Concept of convolution
- DIP - Gray Level Transformations
- DIP - Histogram Equalization
- DIP - Introduction to Probability
- DIP - Histogram Stretching
- DIP - Histogram Sliding
- DIP - Image Transformations
- DIP - Brightness and Contrast
- DIP - Histograms Introduction
- DIP - Concept of Dithering
- DIP - ISO Preference curves
- DIP - Concept of Quantization
- DIP - Gray Level Resolution
- DIP - Pixels Dots and Lines per inch
- DIP - Spatial Resolution
- DIP - Zooming methods
- DIP - Concept of Zooming
- DIP - Pixel Resolution
- DIP - Concept of Sampling
- DIP - Grayscale to RGB Conversion
- DIP - Color Codes Conversion
- DIP - Types of Images
- DIP - Concept of Bits Per Pixel
- DIP - Perspective Transformation
- DIP - Concept of Pixel
- DIP - Camera Mechanism
- DIP - Image Formation on Camera
- DIP - Concept of Dimensions
- DIP - Applications and Usage
- DIP - History of Photography
- DIP - Signal and System Introduction
- DIP - Image Processing Introduction
- DIP - Home
DIP Useful Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Zooming Methods
In this tutorial we are going to formally introduce three methods of zooming that were introduced in the tutorial of Introduction to zooming.
Methods
Pixel reppcation or (Nearest neighbor interpolation)
Zero order hold method
Zooming K times
Each of the methods have their own advantages and disadvantages. We will start by discussing pixel reppcation.
Method 1: Pixel reppcation:
Introduction:
It is also known as Nearest neighbor interpolation. As its name suggest, in this method, we just reppcate the neighboring pixels. As we have already discussed in the tutorial of Samppng, that zooming is nothing but increase amount of sample or pixels. This algorithm works on the same principle.
Working:
In this method we create new pixels form the already given pixels. Each pixel is reppcated in this method n times row wise and column wise and you got a zoomed image. Its as simple as that.
For example:
if you have an image of 2 rows and 2 columns and you want to zoom it twice or 2 times using pixel reppcation, here how it can be done.
For a better understanding, the image has been taken in the form of matrix with the pixel values of the image.
1 | 2 |
3 | 4 |
The above image has two rows and two columns, we will first zoom it row wise.
Row wise zooming:
When we zoom it row wise, we will just simple copy the rows pixels to its adjacent new cell.
Here how it would be done.
1 | 1 | 2 | 2 |
3 | 3 | 4 | 4 |
As you can that in the above matrix, each pixel is reppcated twice in the rows.
Column size zooming:
The next step is to reppcate each of the pixel column wise, that we will simply copy the column pixel to its adjacent new column or simply below it.
Here how it would be done.
1 | 1 | 2 | 2 |
1 | 1 | 2 | 2 |
3 | 3 | 4 | 4 |
3 | 3 | 4 | 4 |
New image size:
As it can be seen from the above example, that an original image of 2 rows and 2 columns has been converted into 4 rows and 4 columns after zooming. That means the new image has a dimensions of
(Original image rows * zooming factor, Original Image cols * zooming factor)
Advantage and disadvantage:
One of the advantage of this zooming technique is, it is very simple. You just have to copy the pixels and nothing else.
The disadvantage of this technique is that image got zoomed but the output is very blurry. And as the zooming factor increased, the image got more and more blurred. That would eventually result in fully blurred image.
Method 2: Zero order hold
Introduction
Zero order hold method is another method of zooming. It is also known as zoom twice. Because it can only zoom twice. We will see in the below example that why it does that.
Working
In zero order hold method, we pick two adjacent elements from the rows respectively and then we add them and spanide the result by two, and place their result in between those two elements. We first do this row wise and then we do this column wise.
For example
Lets take an image of the dimensions of 2 rows and 2 columns and zoom it twice using zero order hold.
1 | 2 |
3 | 4 |
First we will zoom it row wise and then column wise.
Row wise zooming
1 | 1 | 2 |
3 | 3 | 4 |
As we take the first two numbers : (2 + 1) = 3 and then we spanide it by 2, we get 1.5 which is approximated to 1. The same method is appped in the row 2.
Column wise zooming
1 | 1 | 2 |
2 | 2 | 3 |
3 | 3 | 4 |
We take two adjacent column pixel values which are 1 and 3. We add them and got 4. 4 is then spanided by 2 and we get 2 which is placed in between them. The same method is appped in all the columns.
New image size
As you can see that the dimensions of the new image are 3 x 3 where the original image dimensions are 2 x 2. So it means that the dimensions of the new image are based on the following formula
(2(number of rows) minus 1) X (2(number of columns) minus 1)
Advantages and disadvantage.
One of the advantage of this zooming technique , that it does not create as blurry picture as compare to the nearest neighbor interpolation method. But it also has a disadvantage that it can only run on the power of 2. It can be demonstrated here.
Reason behind twice zooming:
Consider the above image of 2 rows and 2 columns. If we have to zoom it 6 times, using zero order hold method , we can not do it. As the formula shows us this.
It could only zoom in the power of 2 2,4,8,16,32 and so on.
Even if you try to zoom it, you can not. Because at first when you will zoom it two times, and the result would be same as shown in the column wise zooming with dimensions equal to 3x3. Then you will zoom it again and you will get dimensions equal to 5 x 5. Now if you will do it again, you will get dimensions equal to 9 x 9.
Whereas according to the formula of yours the answer should be 11x11. As (6(2) minus 1) X (6(2) minus 1) gives 11 x 11.
Method 3: K-Times zooming
Introduction:
K times is the third zooming method we are going to discuss. It is one of the most perfect zooming algorithm discussed so far. It caters the challenges of both twice zooming and pixel reppcation. K in this zooming algorithm stands for zooming factor.
Working:
It works pke this way.
First of all, you have to take two adjacent pixels as you did in the zooming twice. Then you have to subtract the smaller from the greater one. We call this output (OP).
Divide the output(OP) with the zooming factor(K). Now you have to add the result to the smaller value and put the result in between those two values.
Add the value OP again to the value you just put and place it again next to the previous putted value. You have to do it till you place k-1 values in it.
Repeat the same step for all the rows and the columns , and you get a zoomed images.
For example:
Suppose you have an image of 2 rows and 3 columns, which is given below. And you have to zoom it thrice or three times.
15 | 30 | 15 |
30 | 15 | 30 |
K in this case is 3. K = 3.
The number of values that should be inserted is k-1 = 3-1 = 2.
Row wise zooming
Take the first two adjacent pixels. Which are 15 and 30.
Subtract 15 from 30. 30-15 = 15.
Divide 15 by k. 15/k = 15/3 = 5. We call it OP.(where op is just a name)
Add OP to lower number. 15 + OP = 15 + 5 = 20.
Add OP to 20 again. 20 + OP = 20 + 5 = 25.
We do that 2 times because we have to insert k-1 values.
Now repeat this step for the next two adjacent pixels. It is shown in the first table.
After inserting the values, you have to sort the inserted values in ascending order, so there remains a symmetry between them.
It is shown in the second table
Table 1.
15 | 20 | 25 | 30 | 20 | 25 | 15 |
30 | 20 | 25 | 15 | 20 | 25 | 30 |
Table 2.
Column wise zooming
The same procedure has to be performed column wise. The procedure include taking the two adjacent pixel values, and then subtracting the smaller from the bigger one. Then after that, you have to spanide it by k. Store the result as OP. Add OP to smaller one, and then again add OP to the value that comes in first addition of OP. Insert the new values.
Here what you got after all that.
15 | 20 | 25 | 30 | 25 | 20 | 15 |
20 | 21 | 21 | 25 | 21 | 21 | 20 |
25 | 22 | 22 | 20 | 22 | 22 | 25 |
30 | 25 | 20 | 15 | 20 | 25 | 30 |
New image size
The best way to calculate the formula for the dimensions of a new image is to compare the dimensions of the original image and the final image. The dimensions of the original image were 2 X 3. And the dimensions of the new image are 4 x 7.
The formula thus is:
(K (number of rows minus 1) + 1) X (K (number of cols minus 1) + 1)
Advantages and disadvantages
The one of the clear advantage that k time zooming algorithm has that it is able to compute zoom of any factor which was the power of pixel reppcation algorithm , also it gives improved result (less blurry) which was the power of zero order hold method. So hence It comprises the power of the two algorithms.
The only difficulty this algorithm has that it has to be sort in the end, which is an additional step, and thus increases the cost of computation.
Advertisements