- CO - CPU Architecture
- CO - Memory Devices
- CO - Digital Counters
- CO - Digital Registers
- CO - Sequential Circuits
- CO - Combinational Circuits
- CO - Logic Gates
- CO - Boolean Algebra
- CO - Hexadecimal Arithmetic
- CO - Octal Arithmetic
- CO - Binary Arithmetic
- CO - Complement Arithmetic
- CO - Codes Conversion
- CO - Binary Codes
- CO - Number System Conversion
- CO - Digital Number System
- CO - Overview
- CO - Home
Computer Organization Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Codes Conversion
There are many methods or techniques which can be used to convert code from one format to another. We ll demonstrate here the following
Binary to BCD Conversion
BCD to Binary Conversion
BCD to Excess-3
Excess-3 to BCD
Binary to BCD Conversion
Steps
Step 1 -- Convert the binary number to decimal.
Step 2 -- Convert decimal number to BCD.
Example − convert (11101)2 to BCD.
Step 1 − Convert to Decimal
Binary Number − 111012
Calculating Decimal Equivalent −
Step | Binary Number | Decimal Number |
---|---|---|
Step 1 | 111012 | ((1 × 24) + (1 × 23) + (1 × 22) + (0 × 21) + (1 × 20))10 |
Step 2 | 111012 | (16 + 8 + 4 + 0 + 1)10 |
Step 3 | 111012 | 2910 |
Binary Number − 111012 = Decimal Number − 2910
Step 2 − Convert to BCD
Decimal Number − 2910
Calculating BCD Equivalent. Convert each digit into groups of four binary digits equivalent.
Step | Decimal Number | Conversion |
---|---|---|
Step 1 | 2910 | 00102 10012 |
Step 2 | 2910 | 00101001BCD |
Result
(11101)2 = (00101001)BCD
BCD to Binary Conversion
Steps
Step 1 -- Convert the BCD number to decimal.
Step 2 -- Convert decimal to binary.
Example − convert (00101001)BCD to Binary.
Step 1 - Convert to BCD
BCD Number − (00101001)BCD
Calculating Decimal Equivalent. Convert each four digit into a group and get decimal equivalent for each group.
Step | BCD Number | Conversion |
---|---|---|
Step 1 | (00101001)BCD | 00102 10012 |
Step 2 | (00101001)BCD | 210 910 |
Step 3 | (00101001)BCD | 2910 |
BCD Number − (00101001)BCD = Decimal Number − 2910
Step 2 - Convert to Binary
Used long spanision method for decimal to binary conversion.
Decimal Number − 2910
Calculating Binary Equivalent −
Step | Operation | Result | Remainder |
---|---|---|---|
Step 1 | 29 / 2 | 14 | 1 |
Step 2 | 14 / 2 | 7 | 0 |
Step 3 | 7 / 2 | 3 | 1 |
Step 4 | 3 / 2 | 1 | 1 |
Step 5 | 1 / 2 | 0 | 1 |
As mentioned in Steps 2 and 4, the remainders have to be arranged in the reverse order so that the first remainder becomes the least significant digit (LSD) and the last remainder becomes the most significant digit (MSD).
Decimal Number − 2910 = Binary Number − 111012
Result
(00101001)BCD = (11101)2
BCD to Excess-3
Steps
Step 1 -- Convert BCD to decimal.
Step 2 -- Add (3)10 to this decimal number.
Step 3 -- Convert into binary to get excess-3 code.
Example − convert (0110)BCD to Excess-3.
Step 1 − Convert to decimal
(0110)BCD = 610
Step 2 − Add 3 to decimal
(6)10 + (3)10 = (9)10
Step 3 − Convert to Excess-3
(9)10 = (1001)2
Result
(0110)BCD = (1001)XS-3
Excess-3 to BCD Conversion
Steps
Step 1 -- Subtract (0011)2 from each 4 bit of excess-3 digit to obtain the corresponding BCD code.
Example − convert (10011010)XS-3 to BCD.
Given XS-3 number = 1 0 0 1 1 0 1 0 Subtract (0011)2 = 1 0 0 1 0 1 1 1 -------------------- BCD = 0 1 1 0 0 1 1 1
Result
(10011010)XS-3 = (01100111)BCDAdvertisements