- Example Problems
- Measurements
- Measurement Devices
- Magnetrons
- Travelling Wave Tube
- Reflex Klystron
- Cavity Klystron
- Directional Couplers
- Rat-race Junction
- E-H Plane Tee
- H-Plane Tee
- E-Plane Tee
- Microwave Devices
- Avalanche Transit Time Devices
- Components
- Waveguides
- Types of Transmission Lines
- Modes of Propagation
- Transmission Lines
- Introduction
- Microwave Engineering - Home
Microwave Engineering Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Microwave Engineering - E-Plane Tee
An E-Plane Tee junction is formed by attaching a simple waveguide to the broader dimension of a rectangular waveguide, which already has two ports. The arms of rectangular waveguides make two ports called colpnear ports i.e., Port1 and Port2, while the new one, Port3 is called as Side arm or E-arm. T his E-plane Tee is also called as Series Tee.
As the axis of the side arm is parallel to the electric field, this junction is called E-Plane Tee junction. This is also called as Voltage or Series junction. The ports 1 and 2 are 180° out of phase with each other. The cross-sectional details of E-plane tee can be understood by the following figure.
The following figure shows the connection made by the sidearm to the bi-directional waveguide to form the parallel port.
Properties of E-Plane Tee
The properties of E-Plane Tee can be defined by its $[S]_{3x3}$ matrix.
It is a 3×3 matrix as there are 3 possible inputs and 3 possible outputs.
$[S] = egin{bmatrix} S_{11}& S_{12}& S_{13}\ S_{21}& S_{22}& S_{23}\ S_{31}& S_{32}& S_{33} end{bmatrix}$ ........ Equation 1
Scattering coefficients $S_{13}$ and $S_{23}$ are out of phase by 180° with an input at port 3.
$S_{23} = -S_{13}$........ Equation 2
The port is perfectly matched to the junction.
$S_{33} = 0$........ Equation 3
From the symmetric property,
$S_{ij} = S_{ji}$
$S_{12} = S_{21} : : S_{23} = S_{32} : : S_{13} = S_{31}$........ Equation 4
Considering equations 3 & 4, the $[S]$ matrix can be written as,
$[S] = egin{bmatrix} S_{11}& S_{12}& S_{13}\ S_{12}& S_{22}& -S_{13}\ S_{13}& -S_{13}& 0 end{bmatrix}$........ Equation 5
We can say that we have four unknowns, considering the symmetry property.
From the Unitary property
$$[S][S]ast = [I]$$
$$egin{bmatrix} S_{11}& S_{12}& S_{13}\ S_{12}& S_{22}& -S_{13}\ S_{13}& -S_{13}& 0 end{bmatrix} : egin{bmatrix} S_{11}^{*}& S_{12}^{*}& S_{13}^{*}\ S_{12}^{*}& S_{22}^{*}& -S_{13}^{*}\ S_{13}^{*}& -S_{13}^{*}& 0 end{bmatrix} = egin{bmatrix} 1& 0& 0\ 0& 1& 0\ 0& 0& 1 end{bmatrix}$$
Multiplying we get,
(Noting R as row and C as column)
$R_1C_1 : S_{11}S_{11}^{*} + S_{12}S_{12}^{*} + S_{13}S_{13}^{*} = 1$
$left | S_{11} ight |^2 + left | S_{11} ight |^2 + left | S_{11} ight |^2 = 1$ ........ Equation 6
$R_2C_2 : left | S_{12} ight |^2 + left | S_{22} ight |^2 + left | S_{13} ight |^2 = 1$ ......... Equation 7
$R_3C_3 : left | S_{13} ight |^2 + left | S_{13} ight |^2 = 1$ ......... Equation 8
$R_3C_1 : S_{13}S_{11}^{*} - S_{13}S_{12}^{*} = 1$ ......... Equation 9
Equating the equations 6 & 7, we get
$S_{11} = S_{22} $ ......... Equation 10
From Equation 8,
$2left | S_{13} ight |^2 quad or quad S_{13} = frac{1}{sqrt{2}}$ ......... Equation 11
From Equation 9,
$S_{13}left ( S_{11}^{*} - S_{12}^{*} ight )$
Or $S_{11} = S_{12} = S_{22}$ ......... Equation 12
Using the equations 10, 11, and 12 in the equation 6,
we get,
$left | S_{11} ight |^2 + left | S_{11} ight |^2 + frac{1}{2} = 1$
$2left | S_{11} ight |^2 = frac{1}{2}$
Or $S_{11} = frac{1}{2}$ ......... Equation 13
Substituting the values from the above equations in $[S]$ matrix,
We get,
$$left [ S ight ] = egin{bmatrix} frac{1}{2}& frac{1}{2}& frac{1}{sqrt{2}}\ frac{1}{2}& frac{1}{2}& -frac{1}{sqrt{2}}\ frac{1}{sqrt{2}}& -frac{1}{sqrt{2}}& 0 end{bmatrix}$$
We know that $[b]$ = $[S] [a]$
$$egin{bmatrix}b_1 \ b_2 \ b_3 end{bmatrix} = egin{bmatrix} frac{1}{2}& frac{1}{2}& frac{1}{sqrt{2}}\ frac{1}{2}& frac{1}{2}& -frac{1}{sqrt{2}}\ frac{1}{sqrt{2}}& -frac{1}{sqrt{2}}& 0 end{bmatrix} egin{bmatrix} a_1\ a_2\ a_3 end{bmatrix}$$
This is the scattering matrix for E-Plane Tee, which explains its scattering properties.
Advertisements