- Command-Line Arguments
- Objective-C - Error Handling
- Objective-C - Log Handling
- Objective-C - Type Casting
- Objective-C - Typedef
- Objective-C - Preprocessors
- Objective-C - Structures
- Objective-C - Strings
- Objective-C - Pointers
- Objective-C - Arrays
- Objective-C - Numbers
- Objective-C - Blocks
- Objective-C - Functions
- Objective-C - Decision Making
- Objective-C - Loops
- Objective-C - Operators
- Objective-C - Constants
- Objective-C - Variables
- Objective-C - Data Types
- Objective-C - Basic Syntax
- Objective-C - Program Structure
- Objective-C - Environment Setup
- Objective-C - Overview
- Objective-C - Home
Advanced Objective-C
- Obj-C - Memory Management
- Objective-C - Fast Enumeration
- Obj-C - Foundation Framework
- Objective-C - Composite Objects
- Objective-C - Dynamic Binding
- Objective-C - Protocols
- Objective-C - Extensions
- Objective-C - Posing
- Objective-C - Categories
- Objective-C - Data Encapsulation
- Objective-C - Polymorphism
- Objective-C - Inheritance
- Objective-C - Classes & Objects
Objective-C Useful Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Objective-C Arrays
Objective-C programming language provides a data structure called the array, which can store a fixed-size sequential collection of elements of the same type. An array is used to store a collection of data, but it is often more useful to think of an array as a collection of variables of the same type.
Instead of declaring inspanidual variables, such as number0, number1, ..., and number99, you declare one array variable such as numbers and use numbers[0], numbers[1], and ..., numbers[99] to represent inspanidual variables. A specific element in an array is accessed by an index.
All arrays consist of contiguous memory locations. The lowest address corresponds to the first element and the highest address to the last element.
Declaring Arrays
To declare an array in Objective-C, a programmer specifies the type of the elements and the number of elements required by an array as follows −
type arrayName [ arraySize ];
This is called a single-dimensional array. The arraySize must be an integer constant greater than zero and type can be any vapd Objective-C data type. For example, to declare a 10-element array called balance of type double, use this statement −
double balance[10];
Now, balance is a variable array, which is sufficient to hold up to 10 double numbers.
Initiapzing Arrays
You can initiapze an array in Objective-C either one by one or using a single statement as follows −
double balance[5] = {1000.0, 2.0, 3.4, 17.0, 50.0};
The number of values between braces { } can not be larger than the number of elements that we declare for the array between square brackets [ ]. Following is an example to assign a single element of the array −
If you omit the size of the array, an array just big enough to hold the initiapzation is created. Therefore, if you write −
double balance[] = {1000.0, 2.0, 3.4, 17.0, 50.0};
You will create exactly the same array as you did in the previous example.
balance[4] = 50.0;
The above statement assigns element number 5th in the array a value of 50.0. Array with 4th index will be 5th, i.e., last element because all arrays have 0 as the index of their first element which is also called base index. Following is the pictorial representation of the same array we discussed above −
Accessing Array Elements
An element is accessed by indexing the array name. This is done by placing the index of the element within square brackets after the name of the array. For example −
double salary = balance[9];
The above statement will take 10th element from the array and assign the value to salary variable. Following is an example, which will use all the above mentioned three concepts viz. declaration, assignment and accessing arrays −
#import <Foundation/Foundation.h> int main () { int n[ 10 ]; /* n is an array of 10 integers */ int i,j; /* initiapze elements of array n to 0 */ for ( i = 0; i < 10; i++ ) { n[ i ] = i + 100; /* set element at location i to i + 100 */ } /* output each array element s value */ for (j = 0; j < 10; j++ ) { NSLog(@"Element[%d] = %d ", j, n[j] ); } return 0; }
When the above code is compiled and executed, it produces the following result −
2013-09-14 01:24:06.669 demo[16508] Element[0] = 100 2013-09-14 01:24:06.669 demo[16508] Element[1] = 101 2013-09-14 01:24:06.669 demo[16508] Element[2] = 102 2013-09-14 01:24:06.669 demo[16508] Element[3] = 103 2013-09-14 01:24:06.669 demo[16508] Element[4] = 104 2013-09-14 01:24:06.669 demo[16508] Element[5] = 105 2013-09-14 01:24:06.669 demo[16508] Element[6] = 106 2013-09-14 01:24:06.669 demo[16508] Element[7] = 107 2013-09-14 01:24:06.669 demo[16508] Element[8] = 108 2013-09-14 01:24:06.669 demo[16508] Element[9] = 109
Objective-C Arrays in Detail
Arrays are important to Objective-C and need lots of more details. There are following few important concepts related to array which should be clear to a Objective-C programmer −
Sr.No. | Concept & Description |
---|---|
1 | Objective-C supports multidimensional arrays. The simplest form of the multidimensional array is the two-dimensional array. |
2 | You can pass to the function a pointer to an array by specifying the array s name without an index. |
3 | Objective-C allows a function to return an array. |
4 | You can generate a pointer to the first element of an array by simply specifying the array name, without any index. |