- DSA using C - Discussion
- DSA using C - Useful Resources
- DSA using C - Quick Guide
- DSA using C - Recursion
- DSA using C - Sorting techniques
- DSA using C - Search techniques
- DSA using C - Graph
- DSA using C - Heap
- DSA using C - Hash Table
- DSA using C - Tree
- DSA using C - Priority Queue
- DSA using C - Queue
- DSA using C - Parsing Expressions
- DSA using C - Stack
- DSA using C - Circular Linked List
- DSA using C - Doubly Linked List
- DSA using C - Linked List
- DSA using C - Array
- DSA using C - Concepts
- DSA using C - Algorithms
- DSA using C - Environment
- DSA using C - Overview
- DSA using C - Home
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
DSA using C - Tree
Overview
Tree represents nodes connected by edges. We ll going to discuss binary tree or binary search tree specifically.
Binary Tree is a special datastructure used for data storage purposes. A binary tree has a special condition that each node can have two children at maximum. A binary tree have benefits of both an ordered array and a pnked pst as search is as quick as in sorted array and insertion or deletion operation are as fast as in pnked pst.
Terms
Following are important terms with respect to tree.
Path − Path refers to sequence of nodes along the edges of a tree.
Root − Node at the top of the tree is called root. There is only one root per tree and one path from root node to any node.
Parent − Any node except root node has one edge upward to a node called parent.
Child − Node below a given node connected by its edge downward is called its child node.
Leaf − Node which does not have any child node is called leaf node.
Subtree − Subtree represents descendents of a node.
Visiting − Visiting refers to checking value of a node when control is on the node.
Traversing − Traversing means passing through nodes in a specific order.
Levels − Level of a node represents the generation of a node. If root node is at level 0, then its next child node is at level 1, its grandchild is at level 2 and so on.
keys − Key represents a value of a node based on which a search operation is to be carried out for a node.
Binary Search tree exibits a special behaviour. A node s left child must have value less than its parent s value and node s right child must have value greater than it s parent value.
Binary Search Tree Representation
We re going to implement tree using node object and connecting them through references.
Basic Operations
Following are basic primary operations of a tree which are following.
Search − search an element in a tree.
Insert − insert an element in a tree.
Preorder Traversal − traverse a tree in a preorder manner.
Inorder Traversal − traverse a tree in an inorder manner.
Postorder Traversal − traverse a tree in a postorder manner.
Node
Define a node having some data, references to its left and right child nodes.
struct node { int data; struct node *leftChild; struct node *rightChild; };
Search Operation
Whenever an element is to be search. Start search from root node then if data is less than key value, search element in left subtree otherwise search element in right subtree. Follow the same algorithm for each node.
struct node* search(int data){ struct node *current = root; printf("Visiting elements: "); while(current->data != data){ if(current != NULL) printf("%d ",current->data); //go to left tree if(current->data > data){ current = current->leftChild; }//else go to right tree else{ current = current->rightChild; } //not found if(current == NULL){ return NULL; } } return current; }
Insert Operation
Whenever an element is to be inserted. First locate its proper location. Start search from root node then if data is less than key value, search empty location in left subtree and insert the data. Otherwise search empty location in right subtree and insert the data.
void insert(int data){ struct node *tempNode = (struct node*) malloc(sizeof(struct node)); struct node *current; struct node *parent; tempNode->data = data; tempNode->leftChild = NULL; tempNode->rightChild = NULL; //if tree is empty if(root == NULL){ root = tempNode; } else { current = root; parent = NULL; while(1){ parent = current; //go to left of the tree if(data < parent->data){ current = current->leftChild; //insert to the left if(current == NULL){ parent->leftChild = tempNode; return; } }//go to right of the tree else{ current = current->rightChild; //insert to the right if(current == NULL){ parent->rightChild = tempNode; return; } } } } }
Preorder Traversal
It is a simple three step process.
visit root node
traverse left subtree
traverse right subtree
void preOrder(struct node* root){ if(root!=NULL){ printf("%d ",root->data); preOrder(root->leftChild); preOrder(root->rightChild); } }
Inorder Traversal
It is a simple three step process.
traverse left subtree
visit root node
traverse right subtree
void inOrder(struct node* root){ if(root!=NULL){ inOrder(root->leftChild); printf("%d ",root->data); inOrder(root->rightChild); } }
Postorder Traversal
It is a simple three step process.
traverse left subtree
traverse right subtree
visit root node
void postOrder(struct node* root){ if(root!=NULL){ postOrder(root->leftChild); postOrder(root->rightChild); printf("%d ",root->data); } }
Example
#include <stdio.h> #include <string.h> #include <stdpb.h> #include <stdbool.h> struct node { int data; struct node *leftChild; struct node *rightChild; }; struct node *root = NULL; void insert(int data){ struct node *tempNode = (struct node*) malloc(sizeof(struct node)); struct node *current; struct node *parent; tempNode->data = data; tempNode->leftChild = NULL; tempNode->rightChild = NULL; //if tree is empty if(root == NULL){ root = tempNode; } else { current = root; parent = NULL; while(1){ parent = current; //go to left of the tree if(data < parent->data){ current = current->leftChild; //insert to the left if(current == NULL){ parent->leftChild = tempNode; return; } }//go to right of the tree else{ current = current->rightChild; //insert to the right if(current == NULL){ parent->rightChild = tempNode; return; } } } } } struct node* search(int data){ struct node *current = root; printf("Visiting elements: "); while(current->data != data){ if(current != NULL) printf("%d ",current->data); //go to left tree if(current->data > data){ current = current->leftChild; }//else go to right tree else{ current = current->rightChild; } //not found if(current == NULL){ return NULL; } } return current; } void preOrder(struct node* root){ if(root!=NULL){ printf("%d ",root->data); preOrder(root->leftChild); preOrder(root->rightChild); } } void inOrder(struct node* root){ if(root!=NULL){ inOrder(root->leftChild); printf("%d ",root->data); inOrder(root->rightChild); } } void postOrder(struct node* root){ if(root!=NULL){ postOrder(root->leftChild); postOrder(root->rightChild); printf("%d ",root->data); } } void traverse(int traversalType){ switch(traversalType){ case 1: printf(" Preorder traversal: "); preOrder(root); break; case 2: printf(" Inorder traversal: "); inOrder(root); break; case 3: printf(" Postorder traversal: "); postOrder(root); break; } } int main() { /* 11 //Level 0 */ insert(11); /* 11 //Level 0 * | * |---20 //Level 1 */ insert(20); /* 11 //Level 0 * | * 3---|---20 //Level 1 */ insert(3); /* 11 //Level 0 * | * 3---|---20 //Level 1 * | * |--42 //Level 2 */ insert(42); /* 11 //Level 0 * | * 3---|---20 //Level 1 * | * |--42 //Level 2 * | * |--54 //Level 3 */ insert(54); /* 11 //Level 0 * | * 3---|---20 //Level 1 * | * 16--|--42 //Level 2 * | * |--54 //Level 3 */ insert(16); /* 11 //Level 0 * | * 3---|---20 //Level 1 * | * 16--|--42 //Level 2 * | * 32--|--54 //Level 3 */ insert(32); /* 11 //Level 0 * | * 3---|---20 //Level 1 * | | * |--9 16--|--42 //Level 2 * | * 32--|--54 //Level 3 */ insert(9); /* 11 //Level 0 * | * 3---|---20 //Level 1 * | | * |--9 16--|--42 //Level 2 * | | * 4--| 32--|--54 //Level 3 */ insert(4); /* 11 //Level 0 * | * 3---|---20 //Level 1 * | | * |--9 16--|--42 //Level 2 * | | * 4--|--10 32--|--54 //Level 3 */ insert(10); struct node * temp = search(32); if(temp!=NULL){ printf("Element found. "); printf("( %d )",temp->data); printf(" "); } else { printf("Element not found. "); } struct node *node1 = search(2); if(node1!=NULL){ printf("Element found. "); printf("( %d )",node1->data); printf(" "); } else { printf("Element not found. "); } //pre-order traversal //root, left ,right traverse(1); //in-order traversal //left, root ,right traverse(2); //post order traversal //left, right, root traverse(3); }
Output
If we compile and run the above program then it would produce following output −
Visiting elements: 11 20 42 Element found.(32) Visiting elements: 11 3 Element not found. Preorder traversal: 11 3 9 4 10 20 16 42 32 54 Inorder traversal: 3 4 9 10 11 16 20 32 42 54 Postorder traversal: 4 10 9 3 16 32 54 42 20 11Advertisements