English 中文(简体)
DSA using C - Queue
  • 时间:2024-12-22

DSA using C - Queue


Previous Page Next Page  

Overview

Queue is kind of data structure similar to stack with primary difference that the first item inserted is the first item to be removed (FIFO - First In First Out) where stack is based on LIFO, Last In First Out principal.

Queue Representation

Queue

Basic Operations

    insert / enqueue − add an item to the rear of the queue.

    remove / dequeue − remove an item from the front of the queue.

We re going to implement Queue using array in this article. There is few more operations supported by queue which are following.

    Peek − get the element at front of the queue.

    isFull − check if queue is full.

    isEmpty − check if queue is empty.

Insert / Enqueue Operation

Whenever an element is inserted into queue, queue increments the rear index for later use and stores that element at the rear end of the storage. If rear end reaches to the last index and it is wrapped to the bottom location. Such an arrangement is called wrap around and such queue is circular queue. This method is also termed as enqueue operation.

Insert Operation


void insert(int data){
   if(!isFull()){
      if(rear == MAX-1){
         rear = -1;            
      }       
      intArray[++rear] = data;
      itemCount++;
   }
}

Remove / Dequeue Operation

Whenever an element is to be removed from queue, queue get the element using front index and increments the front index. As a wrap around arrangement, if front index is more than array s max index, it is set to 0.

Remove Operation


int removeData(){
   int data = intArray[front++];
   if(front == MAX){
      front = 0;
   }
   itemCount--;
   return data;  
}

Example

QueueDemo.c


#include <stdio.h>
#include <string.h>
#include <stdpb.h>
#include <stdbool.h>
#define MAX 6

int intArray[MAX];
int front = 0;
int rear = -1;
int itemCount = 0;

int peek(){
   return intArray[front];
}
bool isEmpty(){
   return itemCount == 0;
}
bool isFull(){
   return itemCount == MAX;
}
int size(){
   return itemCount;
}
void insert(int data){
   if(!isFull()){
      if(rear == MAX-1){
         rear = -1;            
      }       
      intArray[++rear] = data;
      itemCount++;
   }
}
int removeData(){
   int data = intArray[front++];
   if(front == MAX){
      front = 0;
   }
   itemCount--;
   return data;  
}
int main() {
   /* insert 5 items */
   insert(3);
   insert(5);
   insert(9);
   insert(1);
   insert(12);

   // front : 0
   // rear  : 4
   // ------------------
   // index : 0 1 2 3 4 
   // ------------------
   // queue : 3 5 9 1 12
   insert(15);

   // front : 0
   // rear  : 5
   // ---------------------
   // index : 0 1 2 3 4  5 
   // ---------------------
   // queue : 3 5 9 1 12 15
   if(isFull()){
      printf("Queue is full!
");   
   }

   // remove one item 
   int num = removeData();
   printf("Element removed: %d
",num);
   // front : 1
   // rear  : 5
   // -------------------
   // index : 1 2 3 4  5
   // -------------------
   // queue : 5 9 1 12 15

   // insert more items
   insert(16);

   // front : 1
   // rear  : -1
   // ----------------------
   // index : 0  1 2 3 4  5
   // ----------------------
   // queue : 16 5 9 1 12 15

   // As queue is full, elements will not be inserted. 
   insert(17);
   insert(18);

   // ----------------------
   // index : 0  1 2 3 4  5
   // ----------------------
   // queue : 16 5 9 1 12 15
   printf("Element at front: %d
",peek());

   printf("----------------------
");
   printf("index : 5 4 3 2  1  0
");
   printf("----------------------
");
   printf("Queue:  ");
   while(!isEmpty()){
      int n = removeData();           
      printf("%d ",n);
   }   
}

Output

If we compile and run the above program then it would produce following output −


Queue is full!
Element removed: 3
Element at front: 5
----------------------
index : 5 4 3 2 1 0
----------------------
Queue: 5 9 1 12 15 16
Advertisements