TensorFlow Tutorial
- Recommendations for Neural Network Training
- Image Recognition using TensorFlow
- TensorFlow - Forming Graphs
- Gradient Descent Optimization
- TensorFlow - XOR Implementation
- TensorFlow - Optimizers
- Hidden Layers of Perceptron
- Multi-Layer Perceptron Learning
- TensorFlow - Exporting
- TensorFlow - Distributed Computing
- TensorFlow - Keras
- CNN and RNN Difference
- TFLearn and its installation
- TensorFlow - Linear Regression
- Single Layer Perceptron
- TensorFlow - Word Embedding
- TensorBoard Visualization
- Recurrent Neural Networks
- Convolutional Neural Networks
- TensorFlow - Basics
TensorFlow Useful Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Recommendations for Neural Network Training
In this chapter, we will understand the various aspects of neural network training which can be implemented using TensorFlow framework.
Following are the ten recommendations, which can be evaluated −
Back Propagation
Back propagation is a simple method to compute partial derivatives, which includes the basic form of composition best suitable for neural nets.
Stochastic Gradient Descent
In stochastic gradient descent, a batch is the total number of examples, which a user uses to calculate the gradient in a single iteration. So far, it is assumed that the batch has been the entire data set. The best illustration is working at Google scale; data sets often contain bilpons or even hundreds of bilpons of examples.
Learning Rate Decay
Adapting the learning rate is one of the most important features of gradient descent optimization. This is crucial to TensorFlow implementation.
Dropout
Deep neural nets with a large number of parameters form powerful machine learning systems. However, over fitting is a serious problem in such networks.
Max Poopng
Max poopng is a sample-based discretization process. The object is to down-sample an input representation, which reduces the dimensionapty with the required assumptions.
Long Short Term Memory (LSTM)
LSTM controls the decision on what inputs should be taken within the specified neuron. It includes the control on deciding what should be computed and what output should be generated.
Advertisements