TensorFlow Tutorial
- Recommendations for Neural Network Training
- Image Recognition using TensorFlow
- TensorFlow - Forming Graphs
- Gradient Descent Optimization
- TensorFlow - XOR Implementation
- TensorFlow - Optimizers
- Hidden Layers of Perceptron
- Multi-Layer Perceptron Learning
- TensorFlow - Exporting
- TensorFlow - Distributed Computing
- TensorFlow - Keras
- CNN and RNN Difference
- TFLearn and its installation
- TensorFlow - Linear Regression
- Single Layer Perceptron
- TensorFlow - Word Embedding
- TensorBoard Visualization
- Recurrent Neural Networks
- Convolutional Neural Networks
- TensorFlow - Basics
TensorFlow Useful Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
TensorFlow - Basics
In this chapter, we will learn about the basics of TensorFlow. We will begin by understanding the data structure of tensor.
Tensor Data Structure
Tensors are used as the basic data structures in TensorFlow language. Tensors represent the connecting edges in any flow diagram called the Data Flow Graph. Tensors are defined as multidimensional array or pst.
Tensors are identified by the following three parameters −
Rank
Unit of dimensionapty described within tensor is called rank. It identifies the number of dimensions of the tensor. A rank of a tensor can be described as the order or n-dimensions of a tensor defined.
Shape
The number of rows and columns together define the shape of Tensor.
Type
Type describes the data type assigned to Tensor’s elements.
A user needs to consider the following activities for building a Tensor −
Build an n-dimensional array
Convert the n-dimensional array.
Various Dimensions of TensorFlow
TensorFlow includes various dimensions. The dimensions are described in brief below −
One dimensional Tensor
One dimensional tensor is a normal array structure which includes one set of values of the same data type.
Declaration
>>> import numpy as np >>> tensor_1d = np.array([1.3, 1, 4.0, 23.99]) >>> print tensor_1d
The implementation with the output is shown in the screenshot below −
The indexing of elements is same as Python psts. The first element starts with index of 0; to print the values through index, all you need to do is mention the index number.
>>> print tensor_1d[0] 1.3 >>> print tensor_1d[2] 4.0
Two dimensional Tensors
Sequence of arrays are used for creating “two dimensional tensors”.
The creation of two-dimensional tensors is described below −
Following is the complete syntax for creating two dimensional arrays −
>>> import numpy as np >>> tensor_2d = np.array([(1,2,3,4),(4,5,6,7),(8,9,10,11),(12,13,14,15)]) >>> print(tensor_2d) [[ 1 2 3 4] [ 4 5 6 7] [ 8 9 10 11] [12 13 14 15]] >>>
The specific elements of two dimensional tensors can be tracked with the help of row number and column number specified as index numbers.
>>> tensor_2d[3][2] 14
Tensor Handpng and Manipulations
In this section, we will learn about Tensor Handpng and Manipulations.
To begin with, let us consider the following code −
import tensorflow as tf import numpy as np matrix1 = np.array([(2,2,2),(2,2,2),(2,2,2)],dtype = int32 ) matrix2 = np.array([(1,1,1),(1,1,1),(1,1,1)],dtype = int32 ) print (matrix1) print (matrix2) matrix1 = tf.constant(matrix1) matrix2 = tf.constant(matrix2) matrix_product = tf.matmul(matrix1, matrix2) matrix_sum = tf.add(matrix1,matrix2) matrix_3 = np.array([(2,7,2),(1,4,2),(9,0,2)],dtype = float32 ) print (matrix_3) matrix_det = tf.matrix_determinant(matrix_3) with tf.Session() as sess: result1 = sess.run(matrix_product) result2 = sess.run(matrix_sum) result3 = sess.run(matrix_det) print (result1) print (result2) print (result3)
Output
The above code will generate the following output −
Explanation
We have created multidimensional arrays in the above source code. Now, it is important to understand that we created graph and sessions, which manage the Tensors and generate the appropriate output. With the help of graph, we have the output specifying the mathematical calculations between Tensors.
Advertisements