- DIP - Color Space Conversion
- DIP - GrayScale Conversion OpenCV
- DIP - Introduction To OpenCV
- DIP - Open Source Libraries
- DIP - Create Zooming Effect
- DIP - Weighted Average Filter
- DIP - Laplacian Operator
- DIP - Robinson Operator
- DIP - Kirsch Operator
- DIP - Sobel Operator
- DIP - Prewitt Operator
- DIP - Understanding Convolution
- DIP - Watermark
- DIP - Eroding & Dilation
- DIP - Box Filter
- DIP - Gaussian Filter
- DIP - Image Shape Conversions
- DIP - Basic Thresholding
- DIP - Image Pyramids
- DIP - Adding Image Border
- DIP - Image Compression Technique
- DIP - Enhancing Image Sharpness
- DIP - Enhancing Image Brightness
- DIP - Enhancing Image Contrast
- DIP - Grayscale Conversion
- DIP - Image Pixels
- DIP - Image Download & Upload
- DIP - Java BufferedImage Class
- DIP - Introduction
- DIP - Home
DIP Useful Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Java DIP - Prewitt Operator
Prewitt operator is used for edge detection in an image. It detects two types of edges: vertical edges and horizontal edges.
We use OpenCV function filter2D to apply Prewitt operator to images. It can be found under Imgproc package. Its syntax is given below −
filter2D(src, dst, depth , kernel, anchor, delta, BORDER_DEFAULT );
The function arguments are described below −
Sr.No. | Argument & Description |
---|---|
1 |
src It is source image. |
2 |
dst It is destination image. |
3 |
depth It is the depth of dst. A negative value (such as -1) indicates that the depth is the same as the source. |
4 |
kernel It is the kernel to be scanned through the image. |
5 |
anchor It is the position of the anchor relative to its kernel. The location Point (-1, -1) indicates the center by default. |
6 |
delta It is a value to be added to each pixel during the convolution. By default it is 0. |
7 |
BORDER_DEFAULT We let this value by default. |
Apart from the filter2D method, there are other methods provide by the Imgproc class. They are described briefly −
Sr.No. | Method & Description |
---|---|
1 |
cvtColor(Mat src, Mat dst, int code, int dstCn) It converts an image from one color space to another. |
2 |
dilate(Mat src, Mat dst, Mat kernel) It dilates an image by using a specific structuring element. |
3 |
equapzeHist(Mat src, Mat dst) It equapzes the histogram of a grayscale image. |
4 |
filter2D(Mat src, Mat dst, int depth, Mat kernel, Point anchor, double delta) It convolves an image with the kernel. |
5 |
GaussianBlur(Mat src, Mat dst, Size ksize, double sigmaX) It blurs an image using a Gaussian filter. |
6 |
integral(Mat src, Mat sum) It calculates the integral of an image. |
Example
The following example demonstrates the use of Imgproc class to apply Prewitt operator to an image of Grayscale.
import org.opencv.core.Core; import org.opencv.core.CvType; import org.opencv.core.Mat; import org.opencv.highgui.Highgui; import org.opencv.imgproc.Imgproc; pubpc class convolution { pubpc static void main( String[] args ) { try { int kernelSize = 9; System.loadLibrary( Core.NATIVE_LIBRARY_NAME ); Mat source = Highgui.imread("grayscale.jpg", Highgui.CV_LOAD_IMAGE_GRAYSCALE); Mat destination = new Mat(source.rows(),source.cols(),source.type()); Mat kernel = new Mat(kernelSize,kernelSize, CvType.CV_32F) { { put(0,0,-1); put(0,1,0); put(0,2,1); put(1,0-1); put(1,1,0); put(1,2,1); put(2,0,-1); put(2,1,0); put(2,2,1); } }; Imgproc.filter2D(source, destination, -1, kernel); Highgui.imwrite("output.jpg", destination); } catch (Exception e) { System.out.println("Error: " + e.getMessage()); } } }
Output
When you execute the given code, the following output is seen −
Original Image
This original image is convolved with the Prewitt operator of vertical edges as given below −
Vertical direction
-1 | 0 | 1 |
-1 | 0 | 1 |
-1 | 0 | 1 |
Convolved Image(Vertical Direction)
This original image has also been convolved with the Prewitt operator of horizontal edges, which is given below −
Horizontal Direction
-1 | -1 | -1 |
0 | 0 | 0 |
1 | 1 | 1 |