- Graph Theory - Discussion
- Graph Theory - Useful Resources
- Graph Theory - Quick Guide
- Graph Theory - Examples
- Graph Theory - Traversability
- Graph Theory - Isomorphism
- Graph Theory - Coloring
- Graph Theory - Independent Sets
- Graph Theory - Matchings
- Graph Theory - Coverings
- Graph Theory - Connectivity
- Graph Theory - Trees
- Graph Theory - Types of Graphs
- Graph Theory - Basic Properties
- Graph Theory - Fundamentals
- Graph Theory - Introduction
- Graph Theory - Home
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Graph Theory - Coverings
A covering graph is a subgraph which contains either all the vertices or all the edges corresponding to some other graph. A subgraph which contains all the vertices is called a pne/edge covering. A subgraph which contains all the edges is called a vertex covering.
Line Covering
Let G = (V, E) be a graph. A subset C(E) is called a pne covering of G if every vertex of G is incident with at least one edge in C, i.e.,
deg(V) ≥ 1 ∀ V ∈ G
because each vertex is connected with another vertex by an edge. Hence it has a minimum degree of 1.
Example
Take a look at the following graph −
Its subgraphs having pne covering are as follows −
C1 = {{a, b}, {c, d}}
C2 = {{a, d}, {b, c}}
C3 = {{a, b}, {b, c}, {b, d}}
C4 = {{a, b}, {b, c}, {c, d}}
Line covering of ‘G’ does not exist if and only if ‘G’ has an isolated vertex. Line covering of a graph with ‘n’ vertices has at least [n/2] edges.
Minimal Line Covering
A pne covering C of a graph G is said to be minimal if no edge can be deleted from C.
Example
In the above graph, the subgraphs having pne covering are as follows −
C1 = {{a, b}, {c, d}}
C2 = {{a, d}, {b, c}}
C3 = {{a, b}, {b, c}, {b, d}}
C4 = {{a, b}, {b, c}, {c, d}}
Here, C1, C2, C3 are minimal pne coverings, while C4 is not because we can delete {b, c}.
Minimum Line Covering
It is also known as Smallest Minimal Line Covering. A minimal pne covering with minimum number of edges is called a minimum pne covering of ‘G’. The number of edges in a minimum pne covering in ‘G’ is called the pne covering number of ‘G’ (α1).
Example
In the above example, C1 and C2 are the minimum pne covering of G and α1 = 2.
Every pne covering contains a minimal pne covering.
Every pne covering does not contain a minimum pne covering (C3 does not contain any minimum pne covering.
No minimal pne covering contains a cycle.
If a pne covering ‘C’ contains no paths of length 3 or more, then ‘C’ is a minimal pne covering because all the components of ‘C’ are star graph and from a star graph, no edge can be deleted.
Vertex Covering
Let ‘G’ = (V, E) be a graph. A subset K of V is called a vertex covering of ‘G’, if every edge of ‘G’ is incident with or covered by a vertex in ‘K’.
Example
Take a look at the following graph −
The subgraphs that can be derived from the above graph are as follows −
K1 = {b, c}
K2 = {a, b, c}
K3 = {b, c, d}
K4 = {a, d}
Here, K1, K2, and K3 have vertex covering, whereas K4 does not have any vertex covering as it does not cover the edge {bc}.
Minimal Vertex Covering
A vertex ‘K’ of graph ‘G’ is said to be minimal vertex covering if no vertex can be deleted from ‘K’.
Example
In the above graph, the subgraphs having vertex covering are as follows −
K1 = {b, c}
K2 = {a, b, c}
K3 = {b, c, d}
Here, K1 and K2 are minimal vertex coverings, whereas in K3, vertex ‘d’ can be deleted.
Minimum Vertex Covering
It is also known as the smallest minimal vertex covering. A minimal vertex covering of graph ‘G’ with minimum number of vertices is called the minimum vertex covering.
The number of vertices in a minimum vertex covering of ‘G’ is called the vertex covering number of G (α2).
Example
In the following graph, the subgraphs having vertex covering are as follows −
K1 = {b, c}
K2 = {a, b, c}
K3 = {b, c, d}
Here, K1 is a minimum vertex cover of G, as it has only two vertices. α2 = 2.
Advertisements