Sets, Relations, & Functions
Mathematical Logic
Group Theory
Counting & Probability
Mathematical & Recurrence
Discrete Structures
Boolean Algebra
Discrete Mathematics Resources
- Discrete Mathematics - Discussion
- Discrete Mathematics - Resources
- Discrete Mathematics - Quick Guide
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Discrete Mathematics - Group Theory
Semigroup
A finite or infinite set $‘S’$ with a binary operation $‘omicron’$ (Composition) is called semigroup if it holds following two conditions simultaneously −
Closure − For every pair $(a, b) in S, :(a omicron b)$ has to be present in the set $S$.
Associative − For every element $a, b, c in S, (a omicron b) omicron c = a omicron (b omicron c)$ must hold.
Example
The set of positive integers (excluding zero) with addition operation is a semigroup. For example, $ S = lbrace 1, 2, 3, dots brace $
Here closure property holds as for every pair $(a, b) in S, (a + b)$ is present in the set S. For example, $1 + 2 = 3 in S]$
Associative property also holds for every element $a, b, c in S, (a + b) + c = a + (b + c)$. For example, $(1 + 2) + 3 = 1 + (2 + 3) = 5$
Monoid
A monoid is a semigroup with an identity element. The identity element (denoted by $e$ or E) of a set S is an element such that $(a omicron e) = a$, for every element $a in S$. An identity element is also called a unit element. So, a monoid holds three properties simultaneously − Closure, Associative, Identity element.
Example
The set of positive integers (excluding zero) with multippcation operation is a monoid. $S = lbrace 1, 2, 3, dots brace $
Here closure property holds as for every pair $(a, b) in S, (a imes b)$ is present in the set S. [For example, $1 imes 2 = 2 in S$ and so on]
Associative property also holds for every element $a, b, c in S, (a imes b) imes c = a imes (b imes c)$ [For example, $(1 imes 2) imes 3 = 1 imes (2 imes 3) = 6$ and so on]
Identity property also holds for every element $a in S, (a imes e) = a$ [For example, $(2 imes 1) = 2, (3 imes 1) = 3$ and so on]. Here identity element is 1.
Group
A group is a monoid with an inverse element. The inverse element (denoted by I) of a set S is an element such that $(a omicron I) = (I omicron a) = a$, for each element $a in S$. So, a group holds four properties simultaneously - i) Closure, ii) Associative, iii) Identity element, iv) Inverse element. The order of a group G is the number of elements in G and the order of an element in a group is the least positive integer n such that an is the identity element of that group G.
Examples
The set of $N imes N$ non-singular matrices form a group under matrix multippcation operation.
The product of two $N imes N$ non-singular matrices is also an $N imes N$ non-singular matrix which holds closure property.
Matrix multippcation itself is associative. Hence, associative property holds.
The set of $N imes N$ non-singular matrices contains the identity matrix holding the identity element property.
As all the matrices are non-singular they all have inverse elements which are also nonsingular matrices. Hence, inverse property also holds.
Abepan Group
An abepan group G is a group for which the element pair $(a,b) in G$ always holds commutative law. So, a group holds five properties simultaneously - i) Closure, ii) Associative, iii) Identity element, iv) Inverse element, v) Commutative.
Example
The set of positive integers (including zero) with addition operation is an abepan group. $G = lbrace 0, 1, 2, 3, dots brace$
Here closure property holds as for every pair $(a, b) in S, (a + b)$ is present in the set S. [For example, $1 + 2 = 2 in S$ and so on]
Associative property also holds for every element $a, b, c in S, (a + b) + c = a + (b + c)$ [For example, $(1 +2) + 3 = 1 + (2 + 3) = 6$ and so on]
Identity property also holds for every element $a in S, (a imes e) = a$ [For example, $(2 imes 1) = 2, (3 imes 1) = 3$ and so on]. Here, identity element is 1.
Commutative property also holds for every element $a in S, (a imes b) = (b imes a)$ [For example, $(2 imes 3) = (3 imes 2) = 3$ and so on]
Cycpc Group and Subgroup
A cycpc group is a group that can be generated by a single element. Every element of a cycpc group is a power of some specific element which is called a generator. A cycpc group can be generated by a generator ‘g’, such that every other element of the group can be written as a power of the generator ‘g’.
Example
The set of complex numbers $lbrace 1,-1, i, -i brace$ under multippcation operation is a cycpc group.
There are two generators − $i$ and $–i$ as $i^1 = i, i^2 = -1, i^3 = -i, i^4 = 1$ and also $(–i)^1 = -i, (–i)^2 = -1, (–i)^3 = i, (–i)^4 = 1$ which covers all the elements of the group. Hence, it is a cycpc group.
Note − A cycpc group is always an abepan group but not every abepan group is a cycpc group. The rational numbers under addition is not cycpc but is abepan.
A subgroup H is a subset of a group G (denoted by $H ≤ G$) if it satisfies the four properties simultaneously − Closure, Associative, Identity element, and Inverse.
A subgroup H of a group G that does not include the whole group G is called a proper subgroup (Denoted by $H < G$). A subgroup of a cycpc group is cycpc and a abepan subgroup is also abepan.
Example
Let a group $G = lbrace 1, i, -1, -i brace$
Then some subgroups are $H_1 = lbrace 1 brace, H_2 = lbrace 1,-1 brace$,
This is not a subgroup − $H_3 = lbrace 1, i brace$ because that $(i)^{-1} = -i$ is not in $H_3$
Partially Ordered Set (POSET)
A partially ordered set consists of a set with a binary relation which is reflexive, antisymmetric and transitive. "Partially ordered set" is abbreviated as POSET.
Examples
The set of real numbers under binary operation less than or equal to $(le)$ is a poset.
Let the set $S = lbrace 1, 2, 3 brace$ and the operation is $le$
The relations will be $lbrace(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3) brace$
This relation R is reflexive as $lbrace (1, 1), (2, 2), (3, 3) brace in R$
This relation R is anti-symmetric, as
$lbrace (1, 2), (1, 3), (2, 3) brace in R and lbrace (1, 2), (1, 3), (2, 3) brace ∉ R$
This relation R is also transitive as $lbrace (1,2), (2,3), (1,3) brace in R$.
Hence, it is a poset.
The vertex set of a directed acycpc graph under the operation ‘reachabipty’ is a poset.
Hasse Diagram
The Hasse diagram of a poset is the directed graph whose vertices are the element of that poset and the arcs covers the pairs (x, y) in the poset. If in the poset $x < y$, then the point x appears lower than the point y in the Hasse diagram. If $x<y<z$ in the poset, then the arrow is not shown between x and z as it is imppcit.
Example
The poset of subsets of $lbrace 1, 2, 3 brace = lbrace emptyset, lbrace 1 brace, lbrace 2 brace, lbrace 3 brace, lbrace 1, 2 brace, lbrace 1, 3 brace, lbrace 2, 3 brace, lbrace 1, 2, 3 brace brace$ is shown by the following Hasse diagram −
Linearly Ordered Set
A Linearly ordered set or Total ordered set is a partial order set in which every pair of element is comparable. The elements $a, b in S$ are said to be comparable if either $a le b$ or $b le a$ holds. Trichotomy law defines this total ordered set. A totally ordered set can be defined as a distributive lattice having the property $lbrace a lor b, a land b brace = lbrace a, b brace$ for all values of a and b in set S.
Example
The powerset of $lbrace a, b brace$ ordered by subseteq is a totally ordered set as all the elements of the power set $P = lbrace emptyset, lbrace a brace, lbrace b brace, lbrace a, b brace brace$ are comparable.
Example of non-total order set
A set $S = lbrace 1, 2, 3, 4, 5, 6 brace$ under operation x spanides y is not a total ordered set.
Here, for all $(x, y) in S, x | y$ have to hold but it is not true that 2 | 3, as 2 does not spanide 3 or 3 does not spanide 2. Hence, it is not a total ordered set.
Lattice
A lattice is a poset $(L, le)$ for which every pair $lbrace a, b brace in L$ has a least upper bound (denoted by $a lor b$) and a greatest lower bound (denoted by $a land b$). LUB $(lbrace a,b brace)$ is called the join of a and b. GLB $(lbrace a,b brace )$ is called the meet of a and b.
Example
This above figure is a lattice because for every pair $lbrace a, b brace in L$, a GLB and a LUB exists.
This above figure is a not a lattice because $GLB (a, b)$ and $LUB (e, f)$ does not exist.
Some other lattices are discussed below −
Bounded Lattice
A lattice L becomes a bounded lattice if it has a greatest element 1 and a least element 0.
Complemented Lattice
A lattice L becomes a complemented lattice if it is a bounded lattice and if every element in the lattice has a complement. An element x has a complement x’ if $exists x(x land x’=0 and x lor x’ = 1)$
Distributive Lattice
If a lattice satisfies the following two distribute properties, it is called a distributive lattice.
$a lor (b land c) = (a lor b) land (a lor c)$
$a land (b lor c) = (a land b) lor (a land c)$
Modular Lattice
If a lattice satisfies the following property, it is called modular lattice.
$a land( b lor (a land d)) = (a land b) lor (a land d)$
Properties of Lattices
Idempotent Properties
$a lor a = a$
$a land a = a$
Absorption Properties
$a lor (a land b) = a$
$a land (a lor b) = a$
Commutative Properties
$a lor b = b lor a$
$a land b = b land a$
Associative Properties
$a lor (b lor c) = (a lor b) lor c$
$a land (b land c) = (a land b) land c$
Dual of a Lattice
The dual of a lattice is obtained by interchanging the $lor$ and $land$ operations.
Example
The dual of $lbrack a lor (b land c) brack is lbrack a land (b lor c) brack$
Advertisements