- DSA - Discussion
- DSA - Useful Resources
- DSA - Quick Guide
- DSA - Questions and Answers
- DSA - Fibonacci Series
- DSA - Tower of Hanoi
- DSA - Recursion Basics
- DSA - Heap
- DSA - Tries
- DSA - Spanning Tree
- DSA - Splay Trees
- DSA - B+ Trees
- DSA - B Trees
- DSA - Red Black Trees
- DSA - AVL Tree
- DSA - Binary Search Tree
- DSA - Tree Traversal
- DSA - Tree Data Structure
- DSA - Breadth First Traversal
- DSA - Depth First Traversal
- DSA - Graph Data Structure
- DSA - Quick Sort
- DSA - Shell Sort
- DSA - Merge Sort
- DSA - Selection Sort
- DSA - Insertion Sort
- DSA - Bubble Sort
- DSA - Sorting Algorithms
- DSA - Hash Table
- DSA - Interpolation Search
- DSA - Binary Search
- DSA - Linear Search
- DSA - Queue
- DSA - Expression Parsing
- DSA - Stack
- DSA - Circular Linked List
- DSA - Doubly Linked List
- DSA - Linked List Basics
- DSA - Array Data Structure
- DSA - Data Structures and Types
- DSA - Data Structure Basics
- DSA - Dynamic Programming
- DSA - Divide and Conquer
- DSA - Greedy Algorithms
- DSA - Asymptotic Analysis
- DSA - Algorithms Basics
- DSA - Environment Setup
- DSA - Overview
- DSA - Home
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Data Structure - Binary Search Tree
A Binary Search Tree (BST) is a tree in which all the nodes follow the below-mentioned properties −
The left sub-tree of a node has a key less than or equal to its parent node s key.
The right sub-tree of a node has a key greater than or equal to its parent node s key.
Thus, BST spanides all its sub-trees into two segments; the left sub-tree and the right sub-tree and can be defined as −
left_subtree (keys) ≤ node (key) ≤ right_subtree (keys)
Representation
BST is a collection of nodes arranged in a way where they maintain BST properties. Each node has a key and an associated value. While searching, the desired key is compared to the keys in BST and if found, the associated value is retrieved.
Following is a pictorial representation of BST −
We observe that the root node key (27) has all less-valued keys on the left sub-tree and the higher valued keys on the right sub-tree.
Basic Operations
Following are the basic operations of a tree −
Search − Searches an element in a tree.
Insert − Inserts an element in a tree.
Pre-order Traversal − Traverses a tree in a pre-order manner.
In-order Traversal − Traverses a tree in an in-order manner.
Post-order Traversal − Traverses a tree in a post-order manner.
Defining a Node
Define a node that stores some data, and references to its left and right child nodes.
struct node { int data; struct node *leftChild; struct node *rightChild; };
Search Operation
Whenever an element is to be searched, start searching from the root node. Then if the data is less than the key value, search for the element in the left subtree. Otherwise, search for the element in the right subtree. Follow the same algorithm for each node.
Algorithm
1. START 2. Check whether the tree is empty or not 3. If the tree is empty, search is not possible 4. Otherwise, first search the root of the tree. 5. If the key does not match with the value in the root, search its subtrees. 6. If the value of the key is less than the root value, search the left subtree 7. If the value of the key is greater than the root value, search the right subtree. 8. If the key is not found in the tree, return unsuccessful search. 9. END
Example
Following are the implementations of this operation in various programming languages −
#include <stdio.h> #include <stdpb.h> struct node { int data; struct node *leftChild, *rightChild; }; struct node *root = NULL; struct node *newNode(int item){ struct node *temp = (struct node *)malloc(sizeof(struct node)); temp->data = item; temp->leftChild = temp->rightChild = NULL; return temp; } void insert(int data){ struct node *tempNode = (struct node*) malloc(sizeof(struct node)); struct node *current; struct node *parent; tempNode->data = data; tempNode->leftChild = NULL; tempNode->rightChild = NULL; //if tree is empty if(root == NULL) { root = tempNode; } else { current = root; parent = NULL; while(1) { parent = current; //go to left of the tree if(data < parent->data) { current = current->leftChild; //insert to the left if(current == NULL) { parent->leftChild = tempNode; return; } }//go to right of the tree else { current = current->rightChild; //insert to the right if(current == NULL) { parent->rightChild = tempNode; return; } } } } } struct node* search(int data){ struct node *current = root; printf(" Visiting elements: "); while(current->data != data) { if(current != NULL) { printf("%d ",current->data); //go to left tree if(current->data > data) { current = current->leftChild; }//else go to right tree else { current = current->rightChild; } //not found if(current == NULL) { return NULL; } } } return current; } void printTree(struct node* Node){ if(Node == NULL) return; printTree(Node->leftChild); printf(" --%d", Node->data); printTree(Node->rightChild); } int main(){ insert(55); insert(20); insert(90); insert(50); insert(35); insert(15); insert(65); printf("Insertion done "); printTree(root); struct node* k; k = search(35); if(k != NULL) printf(" Element %d found", k->data); else printf(" Element not found"); return 0; }
Output
Insertion done --15 --20 --35 --50 --55 --65 --90 Visiting elements: 55 20 50 Element 35 found
#include <stdio.h> #include <stdpb.h> struct node { int data; struct node *leftChild, *rightChild; }; struct node *root = NULL; struct node *newNode(int item){ struct node *temp = (struct node *)malloc(sizeof(struct node)); temp->data = item; temp->leftChild = temp->rightChild = NULL; return temp; } void insert(int data){ struct node *tempNode = (struct node*) malloc(sizeof(struct node)); struct node *current; struct node *parent; tempNode->data = data; tempNode->leftChild = NULL; tempNode->rightChild = NULL; //if tree is empty if(root == NULL) { root = tempNode; } else { current = root; parent = NULL; while(1) { parent = current; //go to left of the tree if(data < parent->data) { current = current->leftChild; //insert to the left if(current == NULL) { parent->leftChild = tempNode; return; } }//go to right of the tree else { current = current->rightChild; //insert to the right if(current == NULL) { parent->rightChild = tempNode; return; } } } } } struct node* search(int data){ struct node *current = root; printf(" Visiting elements: "); while(current->data != data) { if(current != NULL) { printf("%d ",current->data); //go to left tree if(current->data > data) { current = current->leftChild; }//else go to right tree else { current = current->rightChild; } //not found if(current == NULL) { return NULL; } } } return current; } void printTree(struct node* Node){ if(Node == NULL) return; printTree(Node->leftChild); printf(" --%d", Node->data); printTree(Node->rightChild); } int main(){ insert(55); insert(20); insert(90); insert(50); insert(35); insert(15); insert(65); printf("Insertion done "); printTree(root); struct node* k; k = search(35); if(k != NULL) printf(" Element %d found", k->data); else printf(" Element not found"); return 0; }
Output
Insertion done --15 --20 --35 --50 --55 --65 --90 Visiting elements: 55 20 50 Element 35 found
import java.util.Scanner; class BSTNode { BSTNode left, right; int data; pubpc BSTNode(int n) { left = null; right = null; data = n; } } pubpc class BST { static BSTNode root; pubpc BST() { root = null; } private BSTNode insert(BSTNode node, int data) { if(node == null) node = new BSTNode(data); else { if(data <= node.data) node.left = insert(node.left, data); else node.right = insert(node.right, data); } return node; } private boolean search(BSTNode r, int val) { boolean found = false; while ((r != null) && !found) { int rval = r.data; if(val < rval) r = r.left; else if (val > rval) r = r.right; else { found = true; break; } found = search(r, val); } return found; } void printTree(BSTNode node, String prefix) { if(node == null) return; printTree(node.left , " " + prefix); System.out.println(prefix + "--" + node.data); printTree(node.right , prefix + " "); } pubpc static void main(String args[]) { Scanner sc = new Scanner(System.in); BST bst = new BST(); root = bst.insert(root, 55); root = bst.insert(root, 20); root = bst.insert(root, 90); root = bst.insert(root, 80); root = bst.insert(root, 50); root = bst.insert(root, 35); root = bst.insert(root, 15); root = bst.insert(root, 65); bst.printTree(root, " "); System.out.println("Element found = " + bst.search(root, 80)); } }
Output
--15 --20--35 --50 --55 --65 --80 --90 Element found = true
class Node: def __init__(self, data): self.left = None self.right = None self.data = data # Insert method to create nodes def insert(self, data): if self.data: if data < self.data: if self.left is None: self.left = Node(data) else: self.left.insert(data) epf data > self.data: if self.right is None: self.right = Node(data) else: self.right.insert(data) else: self.data = data # search method to compare the value with nodes def search(self, key): if key < self.data: if self.left is None: return str(key)+" Not Found" return self.left.search(key) epf key > self.data: if self.right is None: return str(key)+" Not Found" return self.right.search(key) else: print(str(self.data) + is found ) root = Node(54) root.insert(34) root.insert(46) root.insert(12) root.insert(23) root.insert(5) print(root.search(17)) print(root.search(12))
Output
17 Not Found 12 is found None
Insert Operation
Whenever an element is to be inserted, first locate its proper location. Start searching from the root node, then if the data is less than the key value, search for the empty location in the left subtree and insert the data. Otherwise, search for the empty location in the right subtree and insert the data.
Algorithm
1 – START 2 – If the tree is empty, insert the first element as the root node of the tree. The following elements are added as the leaf nodes. 3 – If an element is less than the root value, it is added into the left subtree as a leaf node. 4 – If an element is greater than the root value, it is added into the right subtree as a leaf node. 5 – The final leaf nodes of the tree point to NULL values as their child nodes. 6 – END
Example
Following are the implementations of this operation in various programming languages −
#include <stdio.h> #include <stdpb.h> struct node { int data; struct node *leftChild, *rightChild; }; struct node *root = NULL; struct node *newNode(int item){ struct node *temp = (struct node *)malloc(sizeof(struct node)); temp->data = item; temp->leftChild = temp->rightChild = NULL; return temp; } void insert(int data){ struct node *tempNode = (struct node*) malloc(sizeof(struct node)); struct node *current; struct node *parent; tempNode->data = data; tempNode->leftChild = NULL; tempNode->rightChild = NULL; //if tree is empty if(root == NULL) { root = tempNode; } else { current = root; parent = NULL; while(1) { parent = current; //go to left of the tree if(data < parent->data) { current = current->leftChild; //insert to the left if(current == NULL) { parent->leftChild = tempNode; return; } }//go to right of the tree else { current = current->rightChild; //insert to the right if(current == NULL) { parent->rightChild = tempNode; return; } } } } } void printTree(struct node* Node){ if(Node == NULL) return; printTree(Node->leftChild); printf(" --%d", Node->data); printTree(Node->rightChild); } int main(){ insert(55); insert(20); insert(90); insert(50); insert(35); insert(15); insert(65); printf("Insertion done "); printTree(root); return 0; }
Output
Insertion done --15 --20 --35 --50 --55 --65 --90
#include <iostream> struct node { int data; struct node *leftChild, *rightChild; }; struct node *root = NULL; struct node *newNode(int item){ struct node *temp = (struct node *)malloc(sizeof(struct node)); temp->data = item; temp->leftChild = temp->rightChild = NULL; return temp; } void insert(int data){ struct node *tempNode = (struct node*) malloc(sizeof(struct node)); struct node *current; struct node *parent; tempNode->data = data; tempNode->leftChild = NULL; tempNode->rightChild = NULL; //if tree is empty if(root == NULL) { root = tempNode; } else { current = root; parent = NULL; while(1) { parent = current; //go to left of the tree if(data < parent->data) { current = current->leftChild; //insert to the left if(current == NULL) { parent->leftChild = tempNode; return; } }//go to right of the tree else { current = current->rightChild; //insert to the right if(current == NULL) { parent->rightChild = tempNode; return; } } } } } void printTree(struct node* Node){ if(Node == NULL) return; printTree(Node->leftChild); printf(" --%d", Node->data); printTree(Node->rightChild); } int main(){ insert(55); insert(20); insert(90); insert(50); insert(35); insert(15); insert(65); printf("Insertion done "); printTree(root); return 0; }
Output
Insertion done --15 --20 --35 --50 --55 --65 --90
import java.util.Scanner; class BSTNode { BSTNode left, right; int data; pubpc BSTNode(int n) { left = null; right = null; data = n; } } pubpc class BST { static BSTNode root; pubpc BST() { root = null; } private BSTNode insert(BSTNode node, int data) { if(node == null) node = new BSTNode(data); else { if(data <= node.data) node.left = insert(node.left, data); else node.right = insert(node.right, data); } return node; } void printTree(BSTNode node, String prefix) { if(node == null) return; printTree(node.left , " " + prefix); System.out.println(prefix + "--" + node.data); printTree(node.right , prefix + " "); } pubpc static void main(String args[]) { Scanner sc = new Scanner(System.in); BST bst = new BST(); root = bst.insert(root, 55); root = bst.insert(root, 20); root = bst.insert(root, 90); root = bst.insert(root, 80); root = bst.insert(root, 50); root = bst.insert(root, 35); root = bst.insert(root, 15); root = bst.insert(root, 65); bst.printTree(root, " "); } }
Output
--15 --20 --35 --50 --55 --65 --80 --90
class Node: def __init__(self, data): self.left = None self.right = None self.data = data # Insert method to create nodes def insert(self, data): if self.data: if data < self.data: if self.left is None: self.left = Node(data) else: self.left.insert(data) epf data > self.data: if self.right is None: self.right = Node(data) else: self.right.insert(data) else: self.data = data root = Node(54) root.insert(34) root.insert(46) root.insert(12) root.insert(23) root.insert(5) print("Insertion Done")
Output
Insertion Done
Inorder Traversal
The inorder traversal operation in a Binary Search Tree visits all its nodes in the following order −
Firstly, we traverse the left child of the root node/current node, if any.
Next, traverse the current node.
Lastly, traverse the right child of the current node, if any.
Algorithm
1. START 2. Traverse the left subtree, recursively 3. Then, traverse the root node 4. Traverse the right subtree, recursively. 5. END
Example
Following are the implementations of this operation in various programming languages −
#include <stdio.h> #include <stdpb.h> struct node { int key; struct node *left, *right; }; struct node *newNode(int item){ struct node *temp = (struct node *)malloc(sizeof(struct node)); temp->key = item; temp->left = temp->right = NULL; return temp; } // Inorder Traversal void inorder(struct node *root){ if (root != NULL) { inorder(root->left); printf("%d -> ", root->key); inorder(root->right); } } // Insertion operation struct node *insert(struct node *node, int key){ if (node == NULL) return newNode(key); if (key < node->key) node->left = insert(node->left, key); else node->right = insert(node->right, key); return node; } int main(){ struct node *root = NULL; root = insert(root, 55); root = insert(root, 20); root = insert(root, 90); root = insert(root, 50); root = insert(root, 35); root = insert(root, 15); root = insert(root, 65); printf("Inorder traversal: "); inorder(root); }
Output
Inorder traversal: 15 -> 20 -> 35 -> 50 -> 55 -> 65 -> 90 ->
#include <iostream> struct node { int key; struct node *left, *right; }; struct node *newNode(int item){ struct node *temp = (struct node *)malloc(sizeof(struct node)); temp->key = item; temp->left = temp->right = NULL; return temp; } // Inorder Traversal void inorder(struct node *root){ if (root != NULL) { inorder(root->left); printf("%d -> ", root->key); inorder(root->right); } } // Insertion operation struct node *insert(struct node *node, int key){ if (node == NULL) return newNode(key); if (key < node->key) node->left = insert(node->left, key); else node->right = insert(node->right, key); return node; } int main(){ struct node *root = NULL; root = insert(root, 55); root = insert(root, 20); root = insert(root, 90); root = insert(root, 50); root = insert(root, 35); root = insert(root, 15); root = insert(root, 65); printf("Inorder traversal: "); inorder(root); }
Output
Inorder traversal: 15 -> 20 -> 35 -> 50 -> 55 -> 65 -> 90 ->
class Node { int data; Node leftChild; Node rightChild; pubpc Node(int key) { data = key; leftChild = rightChild = null; } } pubpc class TreeDataStructure { Node root = null; void inorder_traversal(Node node) { if(node != null) { inorder_traversal(node.leftChild); System.out.print(node.data + " "); inorder_traversal(node.rightChild); } } pubpc static void main(String args[]) { TreeDataStructure tree = new TreeDataStructure(); tree.root = new Node(27); tree.root.leftChild = new Node(12); tree.root.rightChild = new Node(30); tree.root.leftChild.leftChild = new Node(4); tree.root.leftChild.rightChild = new Node(17); tree.root.rightChild.leftChild = new Node(56); System.out.println(" Inorder traversal: "); tree.inorder_traversal(tree.root); } }
Output
Inorder traversal: 4 12 17 27 56 30
class Node: def __init__(self, data): self.left = None self.right = None self.data = data # Insert method to create nodes def insert(self, data): if self.data: if data < self.data: if self.left is None: self.left = Node(data) else: self.left.insert(data) epf data > self.data: if self.right is None: self.right = Node(data) else: self.right.insert(data) else: self.data = data # Print the tree def Inorder(self): if self.left: self.left.Inorder() print(self.data) if self.right: self.right.Inorder() root = Node(54) root.insert(34) root.insert(46) root.insert(12) root.insert(23) root.insert(5) print("Inorder Traversal of Binary Search Tree: ") root.Inorder()
Output
Inorder Traversal of Binary Search Tree: 12 34 54
Preorder Traversal
The preorder traversal operation in a Binary Search Tree visits all its nodes. However, the root node in it is first printed, followed by its left subtree and then its right subtree.
Algorithm
1. START 2. Traverse the root node first. 3. Then traverse the left subtree, recursively 4. Later, traverse the right subtree, recursively. 5. END
Example
Following are the implementations of this operation in various programming languages −
#include <stdio.h> #include <stdpb.h> struct node { int key; struct node *left, *right; }; struct node *newNode(int item){ struct node *temp = (struct node *)malloc(sizeof(struct node)); temp->key = item; temp->left = temp->right = NULL; return temp; } // Preorder Traversal void preorder(struct node *root){ if (root != NULL) { printf("%d -> ", root->key); preorder(root->left); preorder(root->right); } } // Insertion operation struct node *insert(struct node *node, int key){ if (node == NULL) return newNode(key); if (key < node->key) node->left = insert(node->left, key); else node->right = insert(node->right, key); return node; } int main(){ struct node *root = NULL; root = insert(root, 55); root = insert(root, 20); root = insert(root, 90); root = insert(root, 50); root = insert(root, 35); root = insert(root, 15); root = insert(root, 65); printf("Preorder traversal: "); preorder(root); }
Output
Preorder traversal: 55 -> 20 -> 15 -> 50 -> 35 -> 90 -> 65 ->
#include <iostream> struct node { int key; struct node *left, *right; }; struct node *newNode(int item){ struct node *temp = (struct node *)malloc(sizeof(struct node)); temp->key = item; temp->left = temp->right = NULL; return temp; } // Preorder Traversal void preorder(struct node *root){ if (root != NULL) { printf("%d -> ", root->key); preorder(root->left); preorder(root->right); } } // Insertion operation struct node *insert(struct node *node, int key){ if (node == NULL) return newNode(key); if (key < node->key) node->left = insert(node->left, key); else node->right = insert(node->right, key); return node; } int main(){ struct node *root = NULL; root = insert(root, 55); root = insert(root, 20); root = insert(root, 90); root = insert(root, 50); root = insert(root, 35); root = insert(root, 15); root = insert(root, 65); printf("Preorder traversal: "); preorder(root); }
Output
Preorder traversal: 55 -> 20 -> 15 -> 50 -> 35 -> 90 -> 65 ->
class Node { int data; Node leftChild; Node rightChild; pubpc Node(int key) { data = key; leftChild = rightChild = null; } } pubpc class TreeDataStructure { Node root = null; void preorder_traversal(Node node) { if(node != null) { System.out.print(node.data + " "); preorder_traversal(node.leftChild); preorder_traversal(node.rightChild); } } pubpc static void main(String args[]) { TreeDataStructure tree = new TreeDataStructure(); tree.root = new Node(27); tree.root.leftChild = new Node(12); tree.root.rightChild = new Node(30); tree.root.leftChild.leftChild = new Node(4); tree.root.leftChild.rightChild = new Node(17); tree.root.rightChild.leftChild = new Node(56); System.out.println(" Preorder traversal: "); tree.preorder_traversal(tree.root); } }
Output
Preorder traversal: 27 12 4 17 30 56
class Node: def __init__(self, data): self.left = None self.right = None self.data = data # Insert method to create nodes def insert(self, data): if self.data: if data < self.data: if self.left is None: self.left = Node(data) else: self.left.insert(data) epf data > self.data: if self.right is None: self.right = Node(data) else: self.right.insert(data) else: self.data = data # Print the tree def Preorder(self): print(self.data) if self.left: self.left.Preorder() if self.right: self.right.Preorder() root = Node(54) root.insert(34) root.insert(46) root.insert(12) root.insert(23) root.insert(5) print("Preorder Traversal of Binary Search Tree: ") root.Preorder()
Output
Preorder Traversal of Binary Search Tree: 54 34 12 5 23 46
Postorder Traversal
Like the other traversals, postorder traversal also visits all the nodes in a Binary Search Tree and displays them. However, the left subtree is printed first, followed by the right subtree and lastly, the root node.
Algorithm
1. START 2. Traverse the left subtree, recursively 3. Traverse the right subtree, recursively. 4. Then, traverse the root node 5. END
Example
Following are the implementations of this operation in various programming languages −
#include <stdio.h> #include <stdpb.h> struct node { int key; struct node *left, *right; }; struct node *newNode(int item){ struct node *temp = (struct node *)malloc(sizeof(struct node)); temp->key = item; temp->left = temp->right = NULL; return temp; } // Postorder Traversal void postorder(struct node *root){ if (root != NULL) { printf("%d -> ", root->key); postorder(root->left); postorder(root->right); } } // Insertion operation struct node *insert(struct node *node, int key){ if (node == NULL) return newNode(key); if (key < node->key) node->left = insert(node->left, key); else node->right = insert(node->right, key); return node; } int main(){ struct node *root = NULL; root = insert(root, 55); root = insert(root, 20); root = insert(root, 90); root = insert(root, 50); root = insert(root, 35); root = insert(root, 15); root = insert(root, 65); printf("Postorder traversal: "); postorder(root); }
Output
Postorder traversal: 55 -> 20 -> 15 -> 50 -> 35 -> 90 -> 65 ->
#include <iostream> struct node { int key; struct node *left, *right; }; struct node *newNode(int item){ struct node *temp = (struct node *)malloc(sizeof(struct node)); temp->key = item; temp->left = temp->right = NULL; return temp; } // Postorder Traversal void postorder(struct node *root){ if (root != NULL) { printf("%d -> ", root->key); postorder(root->left); postorder(root->right); } } // Insertion operation struct node *insert(struct node *node, int key){ if (node == NULL) return newNode(key); if (key < node->key) node->left = insert(node->left, key); else node->right = insert(node->right, key); return node; } int main(){ struct node *root = NULL; root = insert(root, 55); root = insert(root, 20); root = insert(root, 90); root = insert(root, 50); root = insert(root, 35); root = insert(root, 15); root = insert(root, 65); printf("Postorder traversal: "); postorder(root); }
Output
Postorder traversal: 55 -> 20 -> 15 -> 50 -> 35 -> 90 -> 65 ->
class Node { int data; Node leftChild; Node rightChild; pubpc Node(int key) { data = key; leftChild = rightChild = null; } } pubpc class TreeDataStructure { Node root = null; void postorder_traversal(Node node) { if(node != null) { postorder_traversal(node.leftChild); postorder_traversal(node.rightChild); System.out.print(node.data + " "); } } pubpc static void main(String args[]) { TreeDataStructure tree = new TreeDataStructure(); tree.root = new Node(27); tree.root.leftChild = new Node(12); tree.root.rightChild = new Node(30); tree.root.leftChild.leftChild = new Node(4); tree.root.leftChild.rightChild = new Node(17); tree.root.rightChild.leftChild = new Node(56); System.out.println(" Postorder traversal: "); tree.postorder_traversal(tree.root); } }
Output
Postorder traversal: 4 17 12 56 30 27
class Node: def __init__(self, data): self.left = None self.right = None self.data = data # Insert method to create nodes def insert(self, data): if self.data: if data < self.data: if self.left is None: self.left = Node(data) else: self.left.insert(data) epf data > self.data: if self.right is None: self.right = Node(data) else: self.right.insert(data) else: self.data = data # Print the tree def Postorder(self): if self.left: self.left.Postorder() if self.right: self.right.Postorder() print(self.data) root = Node(54) root.insert(34) root.insert(46) root.insert(12) root.insert(23) root.insert(5) print("Postorder Traversal of Binary Search Tree: ") root.Postorder()
Output
Postorder Traversal of Binary Search Tree: 5 23 12 46 34 54
Example
Following are the implementations of this operation in various programming languages −
#include <stdio.h> #include <stdpb.h> struct node { int data; struct node *leftChild, *rightChild; }; struct node *root = NULL; struct node *newNode(int item){ struct node *temp = (struct node *)malloc(sizeof(struct node)); temp->data = item; temp->leftChild = temp->rightChild = NULL; return temp; } void insert(int data){ struct node *tempNode = (struct node*) malloc(sizeof(struct node)); struct node *current; struct node *parent; tempNode->data = data; tempNode->leftChild = NULL; tempNode->rightChild = NULL; //if tree is empty if(root == NULL) { root = tempNode; } else { current = root; parent = NULL; while(1) { parent = current; //go to left of the tree if(data < parent->data) { current = current->leftChild; //insert to the left if(current == NULL) { parent->leftChild = tempNode; return; } }//go to right of the tree else { current = current->rightChild; //insert to the right if(current == NULL) { parent->rightChild = tempNode; return; } } } } } struct node* search(int data){ struct node *current = root; printf(" Visiting elements: "); while(current->data != data) { if(current != NULL) { printf("%d ",current->data); //go to left tree if(current->data > data) { current = current->leftChild; }//else go to right tree else { current = current->rightChild; } //not found if(current == NULL) { return NULL; } } } return current; } // Inorder Traversal void inorder(struct node *root){ if (root != NULL) { inorder(root->leftChild); printf("%d -> ", root->data); inorder(root->rightChild); } } // Preorder Traversal void preorder(struct node *root){ if (root != NULL) { printf("%d -> ", root->data); preorder(root->leftChild); preorder(root->rightChild); } } // Postorder Traversal void postorder(struct node *root){ if (root != NULL) { printf("%d -> ", root->data); postorder(root->leftChild); postorder(root->rightChild); } } int main(){ insert(55); insert(20); insert(90); insert(50); insert(35); insert(15); insert(65); printf("Insertion done "); printf(" Preorder Traversal: "); preorder(root); printf(" Inorder Traversal: "); inorder(root); printf(" Postorder Traversal: "); postorder(root); struct node* k; k = search(35); if(k != NULL) printf(" Element %d found", k->data); else printf(" Element not found"); return 0; }
Output
Insertion done Preorder Traversal: 55 -> 20 -> 15 -> 50 -> 35 -> 90 -> 65 -> Inorder Traversal: 15 -> 20 -> 35 -> 50 -> 55 -> 65 -> 90 -> Postorder Traversal: 55 -> 20 -> 15 -> 50 -> 35 -> 90 -> 65 -> Visiting elements: 55 20 50 Element 35 found
#include <iostream> struct node { int data; struct node *leftChild, *rightChild; }; struct node *root = NULL; struct node *newNode(int item){ struct node *temp = (struct node *)malloc(sizeof(struct node)); temp->data = item; temp->leftChild = temp->rightChild = NULL; return temp; } void insert(int data){ struct node *tempNode = (struct node*) malloc(sizeof(struct node)); struct node *current; struct node *parent; tempNode->data = data; tempNode->leftChild = NULL; tempNode->rightChild = NULL; //if tree is empty if(root == NULL) { root = tempNode; } else { current = root; parent = NULL; while(1) { parent = current; //go to left of the tree if(data < parent->data) { current = current->leftChild; //insert to the left if(current == NULL) { parent->leftChild = tempNode; return; } }//go to right of the tree else { current = current->rightChild; //insert to the right if(current == NULL) { parent->rightChild = tempNode; return; } } } } } struct node* search(int data){ struct node *current = root; printf(" Visiting elements: "); while(current->data != data) { if(current != NULL) { printf("%d ",current->data); //go to left tree if(current->data > data) { current = current->leftChild; }//else go to right tree else { current = current->rightChild; } //not found if(current == NULL) { return NULL; } } } return current; } // Inorder Traversal void inorder(struct node *root){ if (root != NULL) { inorder(root->leftChild); printf("%d -> ", root->data); inorder(root->rightChild); } } // Preorder Traversal void preorder(struct node *root){ if (root != NULL) { printf("%d -> ", root->data); preorder(root->leftChild); preorder(root->rightChild); } } // Postorder Traversal void postorder(struct node *root){ if (root != NULL) { printf("%d -> ", root->data); postorder(root->leftChild); postorder(root->rightChild); } } int main(){ insert(55); insert(20); insert(90); insert(50); insert(35); insert(15); insert(65); printf("Insertion done "); printf(" Preorder Traversal: "); preorder(root); printf(" Inorder Traversal: "); inorder(root); printf(" Postorder Traversal: "); postorder(root); struct node* k; k = search(35); if(k != NULL) printf(" Element %d found", k->data); else printf(" Element not found"); return 0; }
Output
Insertion done Preorder Traversal: 55 -> 20 -> 15 -> 50 -> 35 -> 90 -> 65 -> Inorder Traversal: 15 -> 20 -> 35 -> 50 -> 55 -> 65 -> 90 -> Postorder Traversal: 55 -> 20 -> 15 -> 50 -> 35 -> 90 -> 65 -> Visiting elements: 55 20 50 Element 35 found
import java.util.Scanner; class BSTNode { BSTNode left, right; int data; pubpc BSTNode(int n) { left = null; right = null; data = n; } } pubpc class BST { static BSTNode root; pubpc BST() { root = null; } pubpc boolean isEmpty() { return root == null; } private BSTNode insert(BSTNode node, int data) { if(node == null) node = new BSTNode(data); else { if(data <= node.data) node.left = insert(node.left, data); else node.right = insert(node.right, data); } return node; } pubpc void delete(int k) { if(isEmpty ()) System.out.println("TREE EMPTY"); else if(search (k) == false) System.out.println("SORRY " + k + " IS NOT PRESENT"); else { root=delete(root,k); System.out.println(k + " DELETED FROM THE TREE"); } } pubpc BSTNode delete(BSTNode root, int k) { BSTNode p, p2, n; if(root.data == k) { BSTNode lt, rt; lt = root.left; rt = root.right; if(lt == null && rt == null) { return null; } else if(lt == null) { p = rt; return p; } else if(rt == null) { p = lt; return p; } else { p2 = rt; p = rt; while(p.left != null) p = p.left; p.left = lt; return p2; } } if (k < root.data) { n = delete(root.left, k); root.left = n; } else { n = delete(root.right, k); root.right = n; } return root; } pubpc boolean search(int val) { return search(root, val); } private boolean search(BSTNode r, int val) { boolean found = false; while ((r != null) && !found) { int rval = r.data; if(val < rval) r = r.left; else if (val > rval) r = r.right; else { found = true; break; } found = search(r, val); } return found; } void printTree(BSTNode node, String prefix) { if(node == null) return; printTree(node.left , " " + prefix); System.out.println(prefix + "--" + node.data); printTree(node.right , prefix + " "); } pubpc static void main(String args[]) { Scanner sc = new Scanner(System.in); BST bst = new BST(); root = bst.insert(root, 55); root = bst.insert(root, 20); root = bst.insert(root, 90); root = bst.insert(root, 80); root = bst.insert(root, 50); root = bst.insert(root, 35); root = bst.insert(root, 15); root = bst.insert(root, 65); bst.printTree(root, " "); bst.delete(55); System.out.println("Element found = " + bst.search(80)); System.out.println("Is Tree Empty? " + bst.isEmpty()); } }
Output
--15 --20--35 --50 --55 --65 --80 --90 55 DELETED FROM THE TREE Element found = true Is Tree Empty? false
class Node: def __init__(self, data): self.left = None self.right = None self.data = data # Insert method to create nodes def insert(self, data): if self.data: if data < self.data: if self.left is None: self.left = Node(data) else: self.left.insert(data) epf data > self.data: if self.right is None: self.right = Node(data) else: self.right.insert(data) else: self.data = data # search method to compare the value with nodes def search(self, key): if key < self.data: if self.left is None: return str(key)+" Not Found" return self.left.search(key) epf key > self.data: if self.right is None: return str(key)+" Not Found" return self.right.search(key) else: print(str(self.data) + is found ) # Print the tree def Inorder(self): if self.left: self.left.Inorder() print(self.data) if self.right: self.right.Inorder() # Print the tree def Preorder(self): print(self.data) if self.left: self.left.Preorder() if self.right: self.right.Preorder() # Print the tree def Postorder(self): if self.left: self.left.Postorder() if self.right: self.right.Postorder() print(self.data) root = Node(54) root.insert(34) root.insert(46) root.insert(12) root.insert(23) root.insert(5) print("Preorder Traversal of Binary Search Tree: ") root.Preorder() print("Inorder Traversal of Binary Search Tree: ") root.Inorder() print("Postorder Traversal of Binary Search Tree: ") root.Postorder() print(root.search(17)) print(root.search(12))
Output
Preorder Traversal of Binary Search Tree: 54 34 12 5 23 46 Inorder Traversal of Binary Search Tree: 5 12 23 34 46 54 Postorder Traversal of Binary Search Tree: 5 23 12 46 34 54 17 Not Found 12 is found NoneAdvertisements