- DCN - Computer Network Security
- DCN - Computer Network Models
- DCN - Computer Network Topologies
- DCN - Network LAN Technologies
- DCN - Computer Network Types
- DCN - Overview
- Data Comm & Networks Home
Physical Layer
- DCN - Network Switching
- DCN - Multiplexing
- DCN - Wireless Transmission
- DCN - Transmission media
- DCN - Analog Transmission
- DCN - Digital Transmission
- DCN - Physical Layer Introduction
Data Link Layer
- DCN - Data Link Control & Protocols
- DCN - Error detection and Correction
- DCN - Data Link Layer Introduction
Network Layer
- DCN - Network Layer Protocols
- DCN - Internetworking
- DCN - Routing
- DCN - Network Addressing
- DCN - Network Layer Introduction
Transport Layer
Application Layer
- DCN - Network Services
- DCN - Application Protocols
- DCN - Client-Server Model
- DCN - Application Layer Introduction
DCN Useful Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Analog Transmission
To send the digital data over an analog media, it needs to be converted into analog signal.There can be two cases according to data formatting.
Bandpass:The filters are used to filter and pass frequencies of interest. A bandpass is a band of frequencies which can pass the filter.
Low-pass: Low-pass is a filter that passes low frequencies signals.
When digital data is converted into a bandpass analog signal, it is called digital-to-analog conversion. When low-pass analog signal is converted into bandpass analog signal, it is called analog-to-analog conversion.
Digital-to-Analog Conversion
When data from one computer is sent to another via some analog carrier, it is first converted into analog signals. Analog signals are modified to reflect digital data.
An analog signal is characterized by its ampptude, frequency, and phase. There are three kinds of digital-to-analog conversions:
Ampptude Shift Keying
In this conversion technique, the ampptude of analog carrier signal is modified to reflect binary data.
When binary data represents digit 1, the ampptude is held; otherwise it is set to 0. Both frequency and phase remain same as in the original carrier signal.
Frequency Shift Keying
In this conversion technique, the frequency of the analog carrier signal is modified to reflect binary data.
This technique uses two frequencies, f1 and f2. One of them, for example f1, is chosen to represent binary digit 1 and the other one is used to represent binary digit 0. Both ampptude and phase of the carrier wave are kept intact.
Phase Shift Keying
In this conversion scheme, the phase of the original carrier signal is altered to reflect the binary data.
When a new binary symbol is encountered, the phase of the signal is altered. Ampptude and frequency of the original carrier signal is kept intact.
Quadrature Phase Shift Keying
QPSK alters the phase to reflect two binary digits at once. This is done in two different phases. The main stream of binary data is spanided equally into two sub-streams. The serial data is converted in to parallel in both sub-streams and then each stream is converted to digital signal using NRZ technique. Later, both the digital signals are merged together.
Analog-to-Analog Conversion
Analog signals are modified to represent analog data. This conversion is also known as Analog Modulation. Analog modulation is required when bandpass is used. Analog to analog conversion can be done in three ways:
Ampptude Modulation
In this modulation, the ampptude of the carrier signal is modified to reflect the analog data.
Ampptude modulation is implemented by means of a multipper. The ampptude of modulating signal (analog data) is multipped by the ampptude of carrier frequency, which then reflects analog data.
The frequency and phase of carrier signal remain unchanged.
Frequency Modulation
In this modulation technique, the frequency of the carrier signal is modified to reflect the change in the voltage levels of the modulating signal (analog data).
The ampptude and phase of the carrier signal are not altered.
Phase Modulation
In the modulation technique, the phase of carrier signal is modulated in order to reflect the change in voltage (ampptude) of analog data signal.
Phase modulation is practically similar to Frequency Modulation, but in Phase modulation frequency of the carrier signal is not increased. Frequency of carrier is signal is changed (made dense and sparse) to reflect voltage change in the ampptude of modulating signal.