- Big Data Analytics - Data Scientist
- Big Data Analytics - Data Analyst
- Key Stakeholders
- Core Deliverables
- Big Data Analytics - Methodology
- Big Data Analytics - Data Life Cycle
- Big Data Analytics - Overview
- Big Data Analytics - Home
Big Data Analytics Project
- Data Visualization
- Big Data Analytics - Data Exploration
- Big Data Analytics - Summarizing
- Big Data Analytics - Cleansing data
- Big Data Analytics - Data Collection
- Data Analytics - Problem Definition
Big Data Analytics Methods
- Data Analytics - Statistical Methods
- Big Data Analytics - Data Tools
- Big Data Analytics - Charts & Graphs
- Data Analytics - Introduction to SQL
- Big Data Analytics - Introduction to R
Advanced Methods
- Big Data Analytics - Online Learning
- Big Data Analytics - Text Analytics
- Big Data Analytics - Time Series
- Logistic Regression
- Big Data Analytics - Decision Trees
- Association Rules
- K-Means Clustering
- Naive Bayes Classifier
- Machine Learning for Data Analysis
Big Data Analytics Useful Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Machine Learning for Data Analysis
Machine learning is a subfield of computer science that deals with tasks such as pattern recognition, computer vision, speech recognition, text analytics and has a strong pnk with statistics and mathematical optimization. Apppcations include the development of search engines, spam filtering, Optical Character Recognition (OCR) among others. The boundaries between data mining, pattern recognition and the field of statistical learning are not clear and basically all refer to similar problems.
Machine learning can be spanided in two types of task −
Supervised Learning
Unsupervised Learning
Supervised Learning
Supervised learning refers to a type of problem where there is an input data defined as a matrix X and we are interested in predicting a response y. Where X = {x1, x2, …, xn} has n predictors and has two values y = {c1, c2}.
An example apppcation would be to predict the probabipty of a web user to cpck on ads using demographic features as predictors. This is often called to predict the cpck through rate (CTR). Then y = {cpck, doesn’t − cpck} and the predictors could be the used IP address, the day he entered the site, the user’s city, country among other features that could be available.
Unsupervised Learning
Unsupervised learning deals with the problem of finding groups that are similar within each other without having a class to learn from. There are several approaches to the task of learning a mapping from predictors to finding groups that share similar instances in each group and are different with each other.
An example apppcation of unsupervised learning is customer segmentation. For example, in the telecommunications industry a common task is to segment users according to the usage they give to the phone. This would allow the marketing department to target each group with a different product.
Advertisements