English 中文(简体)
Converting a Fraction to a Repeating Decimal - Basic
  • 时间:2024-11-05

Converting a Fraction to a Repeating Decimal - Basic


Previous Page Next Page  

There are certain decimals, where a digit or a group of digits after the decimal point keep repeating and do not end and they go on forever. Such decimals are called repeating decimals.

For example, following are repeating decimals.

$frac{1}{3} = 0.333333…$

$frac{1}{6} = 0.166666…$

$frac{2}{9} = 0.22222…$

$frac{1}{7} = 0.142857142857…$

The repeating digit or group of digits in a repeating decimal are represented by writing a bar over the repeating digit or group of digits. The following examples show how this is done.

$frac{4}{3} = 1.3333333… = 1.ar{3}$

$frac{1}{7} = 0.142857142857…= 0.overpne{142857}$

$frac{5}{6} = 0.8333333… = 0.overpne{83}$

$frac{2}{11} = 0.overpne{18}$

Convert $frac{2}{3}$ into a decimal. If necessary, use a bar to indicate which digit or group of digits repeats.

Solution

Step 1:

At first, we set up the fraction as a long spanision problem, spaniding 2 by 3

Step 2:

We find that on long spanision $frac{2}{3} = 0.66666...$

Step 3:

The digit 6 keeps on repeating, so we write a bar over 6.

So, $frac{2}{3} = 0.66666... = 0.ar{6}$

Convert $frac{50}{66}$ into a decimal. If necessary, use a bar to indicate which digit or group of digits repeats.

Solution

Step 1:

At first, we set up the fraction as a long spanision problem, spaniding 50 by 66

Step 2:

We find that on long spanision $frac{50}{66} = 0.75757575...$

Step 3:

The group of digits 75 keep on repeating, so we write a bar over 75

Step 4:

So, $frac{50}{66} = 0.757575.. = 0.overpne{75}$

Advertisements