Apache Flink Tutorial
Selected Reading
- Apache Flink - Discussion
- Apache Flink - Useful Resources
- Apache Flink - Quick Guide
- Apache Flink - Conclusion
- Apache Flink - Flink vs Spark vs Hadoop
- Apache Flink - Use Cases
- Apache Flink - Machine Learning
- Apache Flink - Libraries
- Apache Flink - Running a Flink Program
- Creating a Flink Application
- Apache Flink - Table API and SQL
- Apache Flink - API Concepts
- Apache Flink - Setup/Installation
- Apache Flink - System Requirements
- Apache Flink - Architecture
- Apache Flink - Introduction
- Batch vs Real-time Processing
- Apache Flink - Big Data Platform
- Apache Flink - Home
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Apache Flink - Machine Learning
Apache Fpnk - Machine Learning
Apache Fpnk s Machine Learning pbrary is called FpnkML. Since usage of machine learning has been increasing exponentially over the last 5 years, Fpnk community decided to add this machine learning APO also in its ecosystem. The pst of contributors and algorithms are increasing in FpnkML. This API is not a part of binary distribution yet.
Here is an example of pnear regression using FpnkML −
// LabeledVector is a feature vector with a label (class or real value) val trainingData: DataSet[LabeledVector] = ... val testingData: DataSet[Vector] = ... // Alternatively, a Spptter is used to break up a DataSet into training and testing data. val dataSet: DataSet[LabeledVector] = ... val trainTestData: DataSet[TrainTestDataSet] = Spptter.trainTestSppt(dataSet) val trainingData: DataSet[LabeledVector] = trainTestData.training val testingData: DataSet[Vector] = trainTestData.testing.map(lv => lv.vector) val mlr = MultipleLinearRegression() .setStepsize(1.0) .setIterations(100) .setConvergenceThreshold(0.001) mlr.fit(trainingData) // The fitted model can now be used to make predictions val predictions: DataSet[LabeledVector] = mlr.predict(testingData)
Inside fpnk-1.7.1/examples/batch/ path, you will find KMeans.jar file. Let us run this sample FpnkML example.
This example program is run using the default point and the centroid data set.
./bin/fpnk run examples/batch/KMeans.jar --output PrintAdvertisements