English 中文(简体)
Unix / Linux - File System Basics
  • 时间:2024-11-03

Unix / Linux - File System Basics


Previous Page Next Page  

A file system is a logical collection of files on a partition or disk. A partition is a container for information and can span an entire hard drive if desired.

Your hard drive can have various partitions which usually contain only one file system, such as one file system housing the /file system or another containing the /home file system.

One file system per partition allows for the logical maintenance and management of differing file systems.

Everything in Unix is considered to be a file, including physical devices such as DVD-ROMs, USB devices, and floppy drives.

Directory Structure

Unix uses a hierarchical file system structure, much pke an upside-down tree, with root (/) at the base of the file system and all other directories spreading from there.

A Unix filesystem is a collection of files and directories that has the following properties −

    It has a root directory (/) that contains other files and directories.

    Each file or directory is uniquely identified by its name, the directory in which it resides, and a unique identifier, typically called an inode.

    By convention, the root directory has an inode number of 2 and the lost+found directory has an inode number of 3. Inode numbers 0 and 1 are not used. File inode numbers can be seen by specifying the -i option to ls command.

    It is self-contained. There are no dependencies between one filesystem and another.

The directories have specific purposes and generally hold the same types of information for easily locating files. Following are the directories that exist on the major versions of Unix −

Sr.No. Directory & Description
1

/

This is the root directory which should contain only the directories needed at the top level of the file structure

2

/bin

This is where the executable files are located. These files are available to all users

3

/dev

These are device drivers

4

/etc

Supervisor directory commands, configuration files, disk configuration files, vapd user psts, groups, ethernet, hosts, where to send critical messages

5

/pb

Contains shared pbrary files and sometimes other kernel-related files

6

/boot

Contains files for booting the system

7

/home

Contains the home directory for users and other accounts

8

/mnt

Used to mount other temporary file systems, such as cdrom and floppy for the CD-ROM drive and floppy diskette drive, respectively

9

/proc

Contains all processes marked as a file by process number or other information that is dynamic to the system

10

/tmp

Holds temporary files used between system boots

11

/usr

Used for miscellaneous purposes, and can be used by many users. Includes administrative commands, shared files, pbrary files, and others

12

/var

Typically contains variable-length files such as log and print files and any other type of file that may contain a variable amount of data

13

/sbin

Contains binary (executable) files, usually for system administration. For example, fdisk and ifconfig utpties

14

/kernel

Contains kernel files

Navigating the File System

Now that you understand the basics of the file system, you can begin navigating to the files you need. The following commands are used to navigate the system −

Sr.No. Command & Description
1

cat filename

Displays a filename

2

cd dirname

Moves you to the identified directory

3

cp file1 file2

Copies one file/directory to the specified location

4

file filename

Identifies the file type (binary, text, etc)

5

find filename dir

Finds a file/directory

6

head filename

Shows the beginning of a file

7

less filename

Browses through a file from the end or the beginning

8

ls dirname

Shows the contents of the directory specified

9

mkdir dirname

Creates the specified directory

10

more filename

Browses through a file from the beginning to the end

11

mv file1 file2

Moves the location of, or renames a file/directory

12

pwd

Shows the current directory the user is in

13

rm filename

Removes a file

14

rmdir dirname

Removes a directory

15

tail filename

Shows the end of a file

16

touch filename

Creates a blank file or modifies an existing file or its attributes

17

whereis filename

Shows the location of a file

18

which filename

Shows the location of a file if it is in your PATH

You can use Manpage Help to check complete syntax for each command mentioned here.

The df Command

The first way to manage your partition space is with the df (disk free) command. The command df -k (disk free) displays the disk space usage in kilobytes, as shown below −

$df -k
Filesystem      1K-blocks      Used   Available Use% Mounted on
/dev/vzfs        10485760   7836644     2649116  75% /
/devices                0         0           0   0% /devices
$

Some of the directories, such as /devices, shows 0 in the kbytes, used, and avail columns as well as 0% for capacity. These are special (or virtual) file systems, and although they reside on the disk under /, by themselves they do not consume disk space.

The df -k output is generally the same on all Unix systems. Here s what it usually includes −

Sr.No. Column & Description
1

Filesystem

The physical file system name

2

kbytes

Total kilobytes of space available on the storage medium

3

used

Total kilobytes of space used (by files)

4

avail

Total kilobytes available for use

5

capacity

Percentage of total space used by files

6

Mounted on

What the file system is mounted on

You can use the -h (human readable) option to display the output in a format that shows the size in easier-to-understand notation.

The du Command

The du (disk usage) command enables you to specify directories to show disk space usage on a particular directory.

This command is helpful if you want to determine how much space a particular directory is taking. The following command displays number of blocks consumed by each directory. A single block may take either 512 Bytes or 1 Kilo Byte depending on your system.

$du /etc
10     /etc/cron.d
126    /etc/default
6      /etc/dfs
...
$

The -h option makes the output easier to comprehend −

$du -h /etc
5k    /etc/cron.d
63k   /etc/default
3k    /etc/dfs
...
$

Mounting the File System

A file system must be mounted in order to be usable by the system. To see what is currently mounted (available for use) on your system, use the following command −

$ mount
/dev/vzfs on / type reiserfs (rw,usrquota,grpquota)
proc on /proc type proc (rw,nodiratime)
devpts on /dev/pts type devpts (rw)
$

The /mnt directory, by the Unix convention, is where temporary mounts (such as CDROM drives, remote network drives, and floppy drives) are located. If you need to mount a file system, you can use the mount command with the following syntax −

mount -t file_system_type device_to_mount directory_to_mount_to

For example, if you want to mount a CD-ROM to the directory /mnt/cdrom, you can type −

$ mount -t iso9660 /dev/cdrom /mnt/cdrom

This assumes that your CD-ROM device is called /dev/cdrom and that you want to mount it to /mnt/cdrom. Refer to the mount man page for more specific information or type mount -h at the command pne for help information.

After mounting, you can use the cd command to navigate the newly available file system through the mount point you just made.

Unmounting the File System

To unmount (remove) the file system from your system, use the umount command by identifying the mount point or device.

For example, to unmount cdrom, use the following command −

$ umount /dev/cdrom

The mount command enables you to access your file systems, but on most modern Unix systems, the automount function makes this process invisible to the user and requires no intervention.

User and Group Quotas

The user and group quotas provide the mechanisms by which the amount of space used by a single user or all users within a specific group can be pmited to a value defined by the administrator.

Quotas operate around two pmits that allow the user to take some action if the amount of space or number of disk blocks start to exceed the administrator defined pmits −

    Soft Limit − If the user exceeds the pmit defined, there is a grace period that allows the user to free up some space.

    Hard Limit − When the hard pmit is reached, regardless of the grace period, no further files or blocks can be allocated.

There are a number of commands to administer quotas −

Sr.No. Command & Description
1

quota

Displays disk usage and pmits for a user of group

2

edquota

This is a quota editor. Users or Groups quota can be edited using this command

3

quotacheck

Scans a filesystem for disk usage, creates, checks and repairs quota files

4

setquota

This is a command pne quota editor

5

quotaon

This announces to the system that disk quotas should be enabled on one or more filesystems

6

quotaoff

This announces to the system that disk quotas should be disabled for one or more filesystems

7

repquota

This prints a summary of the disc usage and quotas for the specified file systems

You can use Manpage Help to check complete syntax for each command mentioned here.

Advertisements