English 中文(简体)
Seaborn - Pair Grid
  • 时间:2024-11-03

Seaborn - Pair Grid


Previous Page Next Page  

PairGrid allows us to draw a grid of subplots using the same plot type to visuapze data.

Unpke FacetGrid, it uses different pair of variable for each subplot. It forms a matrix of sub-plots. It is also sometimes called as “scatterplot matrix”.

The usage of pairgrid is similar to facetgrid. First initiapse the grid and then pass the plotting function.

Example

import pandas as pd
import seaborn as sb
from matplotpb import pyplot as plt
df = sb.load_dataset( iris )
g = sb.PairGrid(df)
g.map(plt.scatter);
plt.show()
Variousmodels

It is also possible to plot a different function on the diagonal to show the univariate distribution of the variable in each column.

Example

import pandas as pd
import seaborn as sb
from matplotpb import pyplot as plt
df = sb.load_dataset( iris )
g = sb.PairGrid(df)
g.map_diag(plt.hist)
g.map_offdiag(plt.scatter);
plt.show()

Output

Histogram Dots

We can customize the color of these plots using another categorical variable. For example, the iris dataset has four measurements for each of three different species of iris flowers so you can see how they differ.

Example

import pandas as pd
import seaborn as sb
from matplotpb import pyplot as plt
df = sb.load_dataset( iris )
g = sb.PairGrid(df)
g.map_diag(plt.hist)
g.map_offdiag(plt.scatter);
plt.show()

Output

Colored

We can use a different function in the upper and lower triangles to see different aspects of the relationship.

Example

import pandas as pd
import seaborn as sb
from matplotpb import pyplot as plt
df = sb.load_dataset( iris )
g = sb.PairGrid(df)
g.map_upper(plt.scatter)
g.map_lower(sb.kdeplot, cmap = "Blues_d")
g.map_diag(sb.kdeplot, lw = 3, legend = False);
plt.show()

Output

various plots Advertisements