- Comparison with SQL
- Python Pandas - Caveats & Gotchas
- Python Pandas - Sparse Data
- Python Pandas - IO Tools
- Python Pandas - Visualization
- Python Pandas - Categorical Data
- Python Pandas - Timedelta
- Python Pandas - Date Functionality
- Python Pandas - Concatenation
- Python Pandas - Merging/Joining
- Python Pandas - GroupBy
- Python Pandas - Missing Data
- Python Pandas - Aggregations
- Python Pandas - Window Functions
- Statistical Functions
- Indexing & Selecting Data
- Options & Customization
- Working with Text Data
- Python Pandas - Sorting
- Python Pandas - Iteration
- Python Pandas - Reindexing
- Function Application
- Descriptive Statistics
- Python Pandas - Basic Functionality
- Python Pandas - Panel
- Python Pandas - DataFrame
- Python Pandas - Series
- Introduction to Data Structures
- Python Pandas - Environment Setup
- Python Pandas - Introduction
- Python Pandas - Home
Python Pandas Useful Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Python Pandas - Working with Text Data
In this chapter, we will discuss the string operations with our basic Series/Index. In the subsequent chapters, we will learn how to apply these string functions on the DataFrame.
Pandas provides a set of string functions which make it easy to operate on string data. Most importantly, these functions ignore (or exclude) missing/NaN values.
Almost, all of these methods work with Python string functions (refer:
). So, convert the Series Object to String Object and then perform the operation.Let us now see how each operation performs.
Sr.No | Function & Description |
---|---|
1 |
lower() Converts strings in the Series/Index to lower case. |
2 |
upper() Converts strings in the Series/Index to upper case. |
3 |
len() Computes String length(). |
4 |
strip() Helps strip whitespace(including newpne) from each string in the Series/index from both the sides. |
5 |
sppt( ) Sppts each string with the given pattern. |
6 |
cat(sep= ) Concatenates the series/index elements with given separator. |
7 |
get_dummies() Returns the DataFrame with One-Hot Encoded values. |
8 |
contains(pattern) Returns a Boolean value True for each element if the substring contains in the element, else False. |
9 |
replace(a,b) Replaces the value a with the value b. |
10 |
repeat(value) Repeats each element with specified number of times. |
11 |
count(pattern) Returns count of appearance of pattern in each element. |
12 |
startswith(pattern) Returns true if the element in the Series/Index starts with the pattern. |
13 |
endswith(pattern) Returns true if the element in the Series/Index ends with the pattern. |
14 |
find(pattern) Returns the first position of the first occurrence of the pattern. |
15 |
findall(pattern) Returns a pst of all occurrence of the pattern. |
16 |
swapcase Swaps the case lower/upper. |
17 |
islower() Checks whether all characters in each string in the Series/Index in lower case or not. Returns Boolean |
18 |
isupper() Checks whether all characters in each string in the Series/Index in upper case or not. Returns Boolean. |
19 |
isnumeric() Checks whether all characters in each string in the Series/Index are numeric. Returns Boolean. |
Let us now create a Series and see how all the above functions work.
import pandas as pd import numpy as np s = pd.Series([ Tom , Wilpam Rick , John , Alber@t , np.nan, 1234 , SteveSmith ]) print s
Its output is as follows −
0 Tom 1 Wilpam Rick 2 John 3 Alber@t 4 NaN 5 1234 6 Steve Smith dtype: object
lower()
import pandas as pd import numpy as np s = pd.Series([ Tom , Wilpam Rick , John , Alber@t , np.nan, 1234 , SteveSmith ]) print s.str.lower()
Its output is as follows −
0 tom 1 wilpam rick 2 john 3 alber@t 4 NaN 5 1234 6 steve smith dtype: object
upper()
import pandas as pd import numpy as np s = pd.Series([ Tom , Wilpam Rick , John , Alber@t , np.nan, 1234 , SteveSmith ]) print s.str.upper()
Its output is as follows −
0 TOM 1 WILLIAM RICK 2 JOHN 3 ALBER@T 4 NaN 5 1234 6 STEVE SMITH dtype: object
len()
import pandas as pd import numpy as np s = pd.Series([ Tom , Wilpam Rick , John , Alber@t , np.nan, 1234 , SteveSmith ]) print s.str.len()
Its output is as follows −
0 3.0 1 12.0 2 4.0 3 7.0 4 NaN 5 4.0 6 10.0 dtype: float64
strip()
import pandas as pd import numpy as np s = pd.Series([ Tom , Wilpam Rick , John , Alber@t ]) print s print ("After Stripping:") print s.str.strip()
Its output is as follows −
0 Tom 1 Wilpam Rick 2 John 3 Alber@t dtype: object After Stripping: 0 Tom 1 Wilpam Rick 2 John 3 Alber@t dtype: object
sppt(pattern)
import pandas as pd import numpy as np s = pd.Series([ Tom , Wilpam Rick , John , Alber@t ]) print s print ("Sppt Pattern:") print s.str.sppt( )
Its output is as follows −
0 Tom 1 Wilpam Rick 2 John 3 Alber@t dtype: object Sppt Pattern: 0 [Tom, , , , , , , , , , ] 1 [, , , , , Wilpam, Rick] 2 [John] 3 [Alber@t] dtype: object
cat(sep=pattern)
import pandas as pd import numpy as np s = pd.Series([ Tom , Wilpam Rick , John , Alber@t ]) print s.str.cat(sep= _ )
Its output is as follows −
Tom _ Wilpam Rick_John_Alber@t
get_dummies()
import pandas as pd import numpy as np s = pd.Series([ Tom , Wilpam Rick , John , Alber@t ]) print s.str.get_dummies()
Its output is as follows −
Wilpam Rick Alber@t John Tom 0 0 0 0 1 1 1 0 0 0 2 0 0 1 0 3 0 1 0 0
contains ()
import pandas as pd s = pd.Series([ Tom , Wilpam Rick , John , Alber@t ]) print s.str.contains( )
Its output is as follows −
0 True 1 True 2 False 3 False dtype: bool
replace(a,b)
import pandas as pd s = pd.Series([ Tom , Wilpam Rick , John , Alber@t ]) print s print ("After replacing @ with $:") print s.str.replace( @ , $ )
Its output is as follows −
0 Tom 1 Wilpam Rick 2 John 3 Alber@t dtype: object After replacing @ with $: 0 Tom 1 Wilpam Rick 2 John 3 Alber$t dtype: object
repeat(value)
import pandas as pd s = pd.Series([ Tom , Wilpam Rick , John , Alber@t ]) print s.str.repeat(2)
Its output is as follows −
0 Tom Tom 1 Wilpam Rick Wilpam Rick 2 JohnJohn 3 Alber@tAlber@t dtype: object
count(pattern)
import pandas as pd s = pd.Series([ Tom , Wilpam Rick , John , Alber@t ]) print ("The number of m s in each string:") print s.str.count( m )
Its output is as follows −
The number of m s in each string: 0 1 1 1 2 0 3 0
startswith(pattern)
import pandas as pd s = pd.Series([ Tom , Wilpam Rick , John , Alber@t ]) print ("Strings that start with T :") print s.str. startswith ( T )
Its output is as follows −
0 True 1 False 2 False 3 False dtype: bool
endswith(pattern)
import pandas as pd s = pd.Series([ Tom , Wilpam Rick , John , Alber@t ]) print ("Strings that end with t :") print s.str.endswith( t )
Its output is as follows −
Strings that end with t : 0 False 1 False 2 False 3 True dtype: bool
find(pattern)
import pandas as pd s = pd.Series([ Tom , Wilpam Rick , John , Alber@t ]) print s.str.find( e )
Its output is as follows −
0 -1 1 -1 2 -1 3 3 dtype: int64
"-1" indicates that there no such pattern available in the element.
findall(pattern)
import pandas as pd s = pd.Series([ Tom , Wilpam Rick , John , Alber@t ]) print s.str.findall( e )
Its output is as follows −
0 [] 1 [] 2 [] 3 [e] dtype: object
Null pst([ ]) indicates that there is no such pattern available in the element.
swapcase()
import pandas as pd s = pd.Series([ Tom , Wilpam Rick , John , Alber@t ]) print s.str.swapcase()
Its output is as follows −
0 tOM 1 wILLIAM rICK 2 jOHN 3 aLBER@T dtype: object
islower()
import pandas as pd s = pd.Series([ Tom , Wilpam Rick , John , Alber@t ]) print s.str.islower()
Its output is as follows −
0 False 1 False 2 False 3 False dtype: bool
isupper()
import pandas as pd s = pd.Series([ Tom , Wilpam Rick , John , Alber@t ]) print s.str.isupper()
Its output is as follows −
0 False 1 False 2 False 3 False dtype: bool
isnumeric()
import pandas as pd s = pd.Series([ Tom , Wilpam Rick , John , Alber@t ]) print s.str.isnumeric()
Its output is as follows −
0 False 1 False 2 False 3 False dtype: boolAdvertisements