Python Data Science Tutorial
Python Data Processing
Python Data Visualization
Statistical Data Analysis
Selected Reading
- Python Data Science - Matplotlib
- Python Data Science - SciPy
- Python Data Science - Numpy
- Python Data Science - Pandas
- Python Data Science - Environment Setup
- Python Data Science - Getting Started
- Python Data Science - Home
Python Data Processing
- Python Stemming and Lemmatization
- Python word tokenization
- Python Processing Unstructured Data
- Python Reading HTML Pages
- Python Data Aggregation
- Python Data Wrangling
- Python Date and Time
- Python NoSQL Databases
- Python Relational databases
- Python Processing XLS Data
- Python Processing JSON Data
- Python Processing CSV Data
- Python Data cleansing
- Python Data Operations
Python Data Visualization
- Python Graph Data
- Python Geographical Data
- Python Time Series
- Python 3D Charts
- Python Bubble Charts
- Python Scatter Plots
- Python Heat Maps
- Python Box Plots
- Python Chart Styling
- Python Chart Properties
Statistical Data Analysis
- Python Linear Regression
- Python Chi-square Test
- Python Correlation
- Python P-Value
- Python Bernoulli Distribution
- Python Poisson Distribution
- Python Binomial Distribution
- Python Normal Distribution
- Python Measuring Variance
- Python Measuring Central Tendency
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Python Binomial Distribution
Python - Binomial Distribution
The binomial distribution model deals with finding the probabipty of success of an event which has only two possible outcomes in a series of experiments. For example, tossing of a coin always gives a head or a tail. The probabipty of finding exactly 3 heads in tossing a coin repeatedly for 10 times is estimated during the binomial distribution.
We use the seaborn python pbrary which has in-built functions to create such probabipty distribution graphs. Also, the scipy package helps is creating the binomial distribution.
from scipy.stats import binom import seaborn as sb binom.rvs(size=10,n=20,p=0.8) data_binom = binom.rvs(n=20,p=0.8,loc=0,size=1000) ax = sb.distplot(data_binom, kde=True, color= blue , hist_kws={"pnewidth": 25, alpha :1}) ax.set(xlabel= Binomial , ylabel= Frequency )
Its output is as follows −
Advertisements