- Python Data Persistence - Discussion
- Python Data Persistence - Useful Resources
- Python Data Persistence - Quick Guide
- Data Persistence - Openpyxl Module
- Data Persistence - ZODB
- Python Data Persistence - Cassandra Driver
- Python Data Persistence - PyMongo module
- Python Data Persistence - SQLAlchemy
- Python Data Persistence - Sqlite3 Module
- Python Data Persistence - Plistlib Module
- Python Data Persistence - XML Parsers
- Python Data Persistence - JSON Module
- Python Data Persistence - CSV Module
- Python Data Persistence - dbm Package
- Python Data Persistence - Shelve Module
- Python Data Persistence - Marshal Module
- Python Data Persistence - Pickle Module
- Python Data Persistence - Object Serialization
- File Handling with os Module
- Python Data Persistence - File API
- Python Data Persistence - Introduction
- Python Data Persistence - Home
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Python Data Persistence - SQLAlchemy
Any relational database holds data in tables. The table structure defines data type of attributes which are basically of primary data types only which are mapped to corresponding built-in data types of Python. However, Python s user-defined objects can t be persistently stored and retrieved to/from SQL tables.
This is a disparity between SQL types and object oriented programming languages such as Python. SQL doesn t have equivalent data type for others such as dict, tuple, pst, or any user defined class.
If you have to store an object in a relational database, it s instance attributes should be deconstructed into SQL data types first, before executing INSERT query. On the other hand, data retrieved from a SQL table is in primary types. A Python object of desired type will have to be constructed by using for use in Python script. This is where Object Relational Mappers are useful.
Object Relation Mapper (ORM)
An Object Relation Mapper (ORM) is an interface between a class and a SQL table. A Python class is mapped to a certain table in database, so that conversion between object and SQL types is automatically performed.
The Students class written in Python code is mapped to Students table in the database. As a result, all CRUD operations are done by calpng respective methods of the class. This epminates need to execute hard coded SQL queries in Python script.
ORM pbrary thus acts as an abstraction layer over the raw SQL queries and can be of help in rapid apppcation development. SQLAlchemy is a popular object relational mapper for Python. Any manipulation of state of model object is synchronized with its related row in the database table.
SQLALchemy pbrary includes ORM API and SQL Expression Language (SQLAlchemy Core). Expression language executes primitive constructs of the relational database directly.
ORM is a high level and abstracted pattern of usage constructed on top of the SQL Expression Language. It can be said that ORM is an appped usage of the Expression Language. We shall discuss SQLAlchemy ORM API and use SQLite database in this topic.
SQLAlchemy communicates with various types of databases through their respective DBAPI implementations using a dialect system. All dialects require that an appropriate DBAPI driver is installed. Dialects for following type of databases are included −
Firebird
Microsoft SQL Server
MySQL
Oracle
PostgreSQL
SQLite
Sybase
Installation of SQLAlchemy is easy and straightforward, using pip utipty.
pip install sqlalchemy
To check if SQLalchemy is properly installed and its version, enter following on Python prompt −
>>> import sqlalchemy >>>sqlalchemy.__version__ 1.3.11
Interactions with database are done through Engine object obtained as a return value of create_engine() function.
engine =create_engine( sqpte:///mydb.sqpte )
SQLite allows creation of in-memory database. SQLAlchemy engine for in-memory database is created as follows −
from sqlalchemy import create_engine engine=create_engine( sqpte:///:memory: )
If you intend to use MySQL database instead, use its DB-API module – pymysql and respective dialect driver.
engine = create_engine( mysql+pymydsql://root@localhost/mydb )
The create_engine has an optional echo argument. If set to true, the SQL queries generated by engine will be echoed on the terminal.
SQLAlchemy contains declarative base class. It acts as a catalog of model classes and mapped tables.
from sqlalchemy.ext.declarative import declarative_base base=declarative_base()
Next step is to define a model class. It must be derived from base – object of declarative_base class as above.
Set __tablename__ property to name of the table you want to be created in the database. Other attributes correspond to the fields. Each one is a Column object in SQLAlchemy and its data type is from one of the pst below −
BigInteger
Boolean
Date
DateTime
Float
Integer
Numeric
SmallInteger
String
Text
Time
Following code is the model class named as Student that is mapped to Students table.
#myclasses.py from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, Numeric base=declarative_base() class Student(base): __tablename__= Students StudentID=Column(Integer, primary_key=True) name=Column(String) age=Column(Integer) marks=Column(Numeric)
To create a Students table that has a corresponding structure, execute create_all() method defined for base class.
base.metadata.create_all(engine)
We now have to declare an object of our Student class. All database transactions such as add, delete or retrieve data from database, etc., are handled by a Session object.
from sqlalchemy.orm import sessionmaker Session = sessionmaker(bind=engine) sessionobj = Session()
Data stored in Student object is physically added in underlying table by session’s add() method.
s1 = Student(name= Juhi , age=25, marks=200) sessionobj.add(s1) sessionobj.commit()
Here, is the entire code for adding record in students table. As it is executed, corresponding SQL statement log is displayed on console.
from sqlalchemy import Column, Integer, String from sqlalchemy import create_engine from myclasses import Student, base engine = create_engine( sqpte:///college.db , echo=True) base.metadata.create_all(engine) from sqlalchemy.orm import sessionmaker Session = sessionmaker(bind=engine) sessionobj = Session() s1 = Student(name= Juhi , age=25, marks=200) sessionobj.add(s1) sessionobj.commit()
Console output
CREATE TABLE "Students" ( "StudentID" INTEGER NOT NULL, name VARCHAR, age INTEGER, marks NUMERIC, PRIMARY KEY ("StudentID") ) INFO sqlalchemy.engine.base.Engine () INFO sqlalchemy.engine.base.Engine COMMIT INFO sqlalchemy.engine.base.Engine BEGIN (imppcit) INFO sqlalchemy.engine.base.Engine INSERT INTO "Students" (name, age, marks) VALUES (?, ?, ?) INFO sqlalchemy.engine.base.Engine ( Juhi , 25, 200.0) INFO sqlalchemy.engine.base.Engine COMMIT
The session object also provides add_all() method to insert more than one objects in a single transaction.
sessionobj.add_all([s2,s3,s4,s5]) sessionobj.commit()
Now that, records are added in the table, we would pke to fetch from it just as SELECT query does. The session object has query() method to perform the task. Query object is returned by query() method on our Student model.
qry=seesionobj.query(Student)
Use the get() method of this Query object fetches object corresponding to given primary key.
S1=qry.get(1)
While this statement is executed, its corresponding SQL statement echoed on the console will be as follows −
BEGIN (imppcit) SELECT "Students"."StudentID" AS "Students_StudentID", "Students".name AS "Students_name", "Students".age AS "Students_age", "Students".marks AS "Students_marks" FROM "Students" WHERE "Products"."Students" = ? sqlalchemy.engine.base.Engine (1,)
The query.all() method returns a pst of all objects which can be traversed using a loop.
from sqlalchemy import Column, Integer, String, Numeric from sqlalchemy import create_engine from myclasses import Student,base engine = create_engine( sqpte:///college.db , echo=True) base.metadata.create_all(engine) from sqlalchemy.orm import sessionmaker Session = sessionmaker(bind=engine) sessionobj = Session() qry=sessionobj.query(Students) rows=qry.all() for row in rows: print (row)
Updating a record in the mapped table is very easy. All you have to do is fetch a record using get() method, assign a new value to desired attribute and then commit the changes using session object. Below we change marks of Juhi student to 100.
S1=qry.get(1) S1.marks=100 sessionobj.commit()
Deleting a record is just as easy, by deleting desired object from the session.
S1=qry.get(1) Sessionobj.delete(S1) sessionobj.commit()Advertisements