- Hacking RSA Cipher
- RSA Cipher Decryption
- RSA Cipher Encryption
- Creating RSA Keys
- Understanding RSA Algorithm
- Symmetric & Asymmetric Cryptography
- Implementation of One Time Pad Cipher
- One Time Pad Cipher
- Implementing Vignere Cipher
- Understanding Vignere Cipher
- Python Modules of Cryptography
- Decryption of Simple Substitution Cipher
- Testing of Simple Substitution Cipher
- Simple Substitution Cipher
- Hacking Monoalphabetic Cipher
- Affine Ciphers
- Multiplicative Cipher
- XOR Process
- Base64 Encoding & Decoding
- Decryption of files
- Encryption of files
- Decryption of Transposition Cipher
- Encryption of Transposition Cipher
- Transposition Cipher
- ROT13 Algorithm
- Caesar Cipher
- Reverse Cipher
- Python Overview and Installation
- Double Strength Encryption
- Overview
- Home
Useful Resources
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Creating RSA Keys
In this chapter, we will focus on step wise implementation of RSA algorithm using Python.
Generating RSA keys
The following steps are involved in generating RSA keys −
Create two large prime numbers namely p and q. The product of these numbers will be called n, where n= p*q
Generate a random number which is relatively prime with (p-1) and (q-1). Let the number be called as e.
Calculate the modular inverse of e. The calculated inverse will be called as d.
Algorithms for generating RSA keys
We need two primary algorithms for generating RSA keys using Python − Cryptomath module and Rabin Miller module.
Cryptomath Module
The source code of cryptomath module which follows all the basic implementation of RSA algorithm is as follows −
def gcd(a, b): while a != 0: a, b = b % a, a return b def findModInverse(a, m): if gcd(a, m) != 1: return None u1, u2, u3 = 1, 0, a v1, v2, v3 = 0, 1, m while v3 != 0: q = u3 // v3 v1, v2, v3, u1, u2, u3 = (u1 - q * v1), (u2 - q * v2), (u3 - q * v3), v1, v2, v3 return u1 % m
RabinMiller Module
The source code of RabinMiller module which follows all the basic implementation of RSA algorithm is as follows −
import random def rabinMiller(num): s = num - 1 t = 0 while s % 2 == 0: s = s // 2 t += 1 for trials in range(5): a = random.randrange(2, num - 1) v = pow(a, s, num) if v != 1: i = 0 while v != (num - 1): if i == t - 1: return False else: i = i + 1 v = (v ** 2) % num return True def isPrime(num): if (num 7< 2): return False lowPrimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313,317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997] if num in lowPrimes: return True for prime in lowPrimes: if (num % prime == 0): return False return rabinMiller(num) def generateLargePrime(keysize = 1024): while True: num = random.randrange(2**(keysize-1), 2**(keysize)) if isPrime(num): return num
The complete code for generating RSA keys is as follows −
import random, sys, os, rabinMiller, cryptomath def main(): makeKeyFiles( RSA_demo , 1024) def generateKey(keySize): # Step 1: Create two prime numbers, p and q. Calculate n = p * q. print( Generating p prime... ) p = rabinMiller.generateLargePrime(keySize) print( Generating q prime... ) q = rabinMiller.generateLargePrime(keySize) n = p * q # Step 2: Create a number e that is relatively prime to (p-1)*(q-1). print( Generating e that is relatively prime to (p-1)*(q-1)... ) while True: e = random.randrange(2 ** (keySize - 1), 2 ** (keySize)) if cryptomath.gcd(e, (p - 1) * (q - 1)) == 1: break # Step 3: Calculate d, the mod inverse of e. print( Calculating d that is mod inverse of e... ) d = cryptomath.findModInverse(e, (p - 1) * (q - 1)) pubpcKey = (n, e) privateKey = (n, d) print( Pubpc key: , pubpcKey) print( Private key: , privateKey) return (pubpcKey, privateKey) def makeKeyFiles(name, keySize): # Creates two files x_pubkey.txt and x_privkey.txt (where x is the value in name) with the the n,e and d,e integers written in them, # depmited by a comma. if os.path.exists( %s_pubkey.txt % (name)) or os.path.exists( %s_privkey.txt % (name)): sys.exit( WARNING: The file %s_pubkey.txt or %s_privkey.txt already exists! Use a different name or delete these files and re-run this program. % (name, name)) pubpcKey, privateKey = generateKey(keySize) print() print( The pubpc key is a %s and a %s digit number. % (len(str(pubpcKey[0])), len(str(pubpcKey[1])))) print( Writing pubpc key to file %s_pubkey.txt... % (name)) fo = open( %s_pubkey.txt % (name), w ) fo.write( %s,%s,%s % (keySize, pubpcKey[0], pubpcKey[1])) fo.close() print() print( The private key is a %s and a %s digit number. % (len(str(pubpcKey[0])), len(str(pubpcKey[1])))) print( Writing private key to file %s_privkey.txt... % (name)) fo = open( %s_privkey.txt % (name), w ) fo.write( %s,%s,%s % (keySize, privateKey[0], privateKey[1])) fo.close() # If makeRsaKeys.py is run (instead of imported as a module) call # the main() function. if __name__ == __main__ : main()
Output
The pubpc key and private keys are generated and saved in the respective files as shown in the following output.
Advertisements