English 中文(简体)
Creating RSA Keys
  • 时间:2024-12-22

Creating RSA Keys


Previous Page Next Page  

In this chapter, we will focus on step wise implementation of RSA algorithm using Python.

Generating RSA keys

The following steps are involved in generating RSA keys −

    Create two large prime numbers namely p and q. The product of these numbers will be called n, where n= p*q

    Generate a random number which is relatively prime with (p-1) and (q-1). Let the number be called as e.

    Calculate the modular inverse of e. The calculated inverse will be called as d.

Algorithms for generating RSA keys

We need two primary algorithms for generating RSA keys using Python − Cryptomath module and Rabin Miller module.

Cryptomath Module

The source code of cryptomath module which follows all the basic implementation of RSA algorithm is as follows −

def gcd(a, b):
   while a != 0:
      a, b = b % a, a
   return b

def findModInverse(a, m):
   if gcd(a, m) != 1:
      return None
   u1, u2, u3 = 1, 0, a
   v1, v2, v3 = 0, 1, m
   
   while v3 != 0:
      q = u3 // v3
         v1, v2, v3, u1, u2, u3 = (u1 - q * v1), (u2 - q * v2), (u3 - q * v3), v1, v2, v3
   return u1 % m

RabinMiller Module

The source code of RabinMiller module which follows all the basic implementation of RSA algorithm is as follows −

import random
def rabinMiller(num):
   s = num - 1
   t = 0
   
   while s % 2 == 0:
      s = s // 2
      t += 1
   for trials in range(5):
      a = random.randrange(2, num - 1)
      v = pow(a, s, num)
      if v != 1:
         i = 0
         while v != (num - 1):
            if i == t - 1:
               return False
            else:
               i = i + 1
               v = (v ** 2) % num
      return True
def isPrime(num):
   if (num 7< 2):
      return False
   lowPrimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 
   67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 
   157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 
   251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313,317, 331, 337, 347, 349, 
   353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 
   457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 
   571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 
   673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 
   797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 
   911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997]
	
   if num in lowPrimes:
      return True
   for prime in lowPrimes:
      if (num % prime == 0):
         return False
   return rabinMiller(num)
def generateLargePrime(keysize = 1024):
   while True:
      num = random.randrange(2**(keysize-1), 2**(keysize))
      if isPrime(num):
         return num

The complete code for generating RSA keys is as follows −

import random, sys, os, rabinMiller, cryptomath

def main():
   makeKeyFiles( RSA_demo , 1024)

def generateKey(keySize):
   # Step 1: Create two prime numbers, p and q. Calculate n = p * q.
   print( Generating p prime... )
   p = rabinMiller.generateLargePrime(keySize)
   print( Generating q prime... )
   q = rabinMiller.generateLargePrime(keySize)
   n = p * q
	
   # Step 2: Create a number e that is relatively prime to (p-1)*(q-1).
   print( Generating e that is relatively prime to (p-1)*(q-1)... )
   while True:
      e = random.randrange(2 ** (keySize - 1), 2 ** (keySize))
      if cryptomath.gcd(e, (p - 1) * (q - 1)) == 1:
         break
   
   # Step 3: Calculate d, the mod inverse of e.
   print( Calculating d that is mod inverse of e... )
   d = cryptomath.findModInverse(e, (p - 1) * (q - 1))
   pubpcKey = (n, e)
   privateKey = (n, d)
   print( Pubpc key: , pubpcKey)
   print( Private key: , privateKey)
   return (pubpcKey, privateKey)

def makeKeyFiles(name, keySize):
   # Creates two files  x_pubkey.txt  and  x_privkey.txt  
      (where x is the value in name) with the the n,e and d,e integers written in them,
   # depmited by a comma.
   if os.path.exists( %s_pubkey.txt  % (name)) or os.path.exists( %s_privkey.txt  % (name)):
      sys.exit( WARNING: The file %s_pubkey.txt or %s_privkey.txt already exists! Use a different name or delete these files and re-run this program.  % (name, name))
   pubpcKey, privateKey = generateKey(keySize)
   print()
   print( The pubpc key is a %s and a %s digit number.  % (len(str(pubpcKey[0])), len(str(pubpcKey[1])))) 
   print( Writing pubpc key to file %s_pubkey.txt...  % (name))
   
   fo = open( %s_pubkey.txt  % (name),  w )
	fo.write( %s,%s,%s  % (keySize, pubpcKey[0], pubpcKey[1]))
   fo.close()
   print()
   print( The private key is a %s and a %s digit number.  % (len(str(pubpcKey[0])), len(str(pubpcKey[1]))))
   print( Writing private key to file %s_privkey.txt...  % (name))
   
   fo = open( %s_privkey.txt  % (name),  w )
   fo.write( %s,%s,%s  % (keySize, privateKey[0], privateKey[1]))
   fo.close()
# If makeRsaKeys.py is run (instead of imported as a module) call
# the main() function.
if __name__ ==  __main__ :
   main()

Output

The pubpc key and private keys are generated and saved in the respective files as shown in the following output.

Pubpckey Advertisements