English 中文(简体)
Gensim - Using LDA Topic Model
  • 时间:2024-09-17

Gensim - Using LDA Topic Model


Previous Page Next Page  

In this chapter, we will understand how to use Latent Dirichlet Allocation (LDA) topic model.

Viewing Topics in LDA Model

The LDA model (lda_model) we have created above can be used to view the topics from the documents. It can be done with the help of following script −


pprint(lda_model.print_topics())
doc_lda = lda_model[corpus]

Output


[
   (0, 
    0.036*"go" + 0.027*"get" + 0.021*"time" + 0.017*"back" + 0.015*"good" +  
    0.014*"much" + 0.014*"be" + 0.013*"car" + 0.013*"well" + 0.013*"year" ),
   (1,
    0.078*"screen" + 0.067*"video" + 0.052*"character" + 0.046*"normal" +  
    0.045*"mouse" + 0.034*"manager" + 0.034*"disease" + 0.031*"processor" +  
    0.028*"excuse" + 0.028*"choice" ),
   (2,
    0.776*"ax" + 0.079*"_" + 0.011*"boy" + 0.008*"ticket" + 0.006*"red" +  
    0.004*"conservative" + 0.004*"cult" + 0.004*"amazing" + 0.003*"runner" +  
    0.003*"roughly" ),
   (3,
    0.086*"season" + 0.078*"fan" + 0.072*"reapty" + 0.065*"trade" +  
    0.045*"concept" + 0.040*"pen" + 0.028*"blow" + 0.025*"improve" +  
    0.025*"cap" + 0.021*"penguin" ),
   (4,
    0.027*"group" + 0.023*"issue" + 0.016*"case" + 0.016*"cause" +  
    0.014*"state" + 0.012*"whole" + 0.012*"support" + 0.011*"government" +  
    0.010*"year" + 0.010*"rate" ),
   (5,
    0.133*"evidence" + 0.047*"bepeve" + 0.044*"repgion" + 0.042*"bepef" +  
    0.041*"sense" + 0.041*"discussion" + 0.034*"atheist" + 0.030*"conclusion" +
    
    0.029*"explain" + 0.029*"claim" ),
   (6,
    0.083*"space" + 0.059*"science" + 0.031*"launch" + 0.030*"earth" +  
    0.026*"route" + 0.024*"orbit" + 0.024*"scientific" + 0.021*"mission" +  
    0.018*"plane" + 0.017*"satelpte" ),
   (7,
    0.065*"file" + 0.064*"program" + 0.048*"card" + 0.041*"window" +  
    0.038*"driver" + 0.037*"software" + 0.034*"run" + 0.029*"machine" +  
    0.029*"entry" + 0.028*"version" ),
   (8,
    0.078*"pubpsh" + 0.059*"mount" + 0.050*"turkish" + 0.043*"armenian" +  
    0.027*"western" + 0.026*"russian" + 0.025*"locate" + 0.024*"proceed" +  
    0.024*"electrical" + 0.022*"terrorism" ),
   (9,
    0.023*"people" + 0.023*"child" + 0.021*"kill" + 0.020*"man" + 0.019*"death"  
    + 0.015*"die" + 0.015*"pve" + 0.014*"attack" + 0.013*"age" +  
    0.011*"church" ),
   (10,
    0.092*"cpu" + 0.085*"black" + 0.071*"controller" + 0.039*"white" +  
    0.028*"water" + 0.027*"cold" + 0.025*"sopd" + 0.024*"cool" + 0.024*"heat"  
    + 0.023*"nuclear" ),
   (11,
    0.071*"monitor" + 0.044*"box" + 0.042*"option" + 0.041*"generate" +  
    0.038*"vote" + 0.032*"battery" + 0.029*"wave" + 0.026*"tradition" +  
    0.026*"fairly" + 0.025*"task" ),
   (12,
    0.048*"send" + 0.045*"mail" + 0.036*"pst" + 0.033*"include" +  
    0.032*"price" + 0.031*"address" + 0.027*"email" + 0.026*"receive" +  
    0.024*"book" + 0.024*"sell" ),
   (13,
    0.515*"drive" + 0.052*"laboratory" + 0.042*"bpnd" + 0.020*"investment" +  
    0.011*"creature" + 0.010*"loop" + 0.005*"dialog" + 0.000*"slave" +  
    0.000*"jumper" + 0.000*"sector" ),
   (14,
    0.153*"patient" + 0.066*"treatment" + 0.062*"printer" + 0.059*"doctor" +  

    0.036*"medical" + 0.031*"energy" + 0.029*"study" + 0.029*"probe" +  
    0.024*"mph" + 0.020*"physician" ),
   (15,
    0.068*"law" + 0.055*"gun" + 0.039*"government" + 0.036*"right" +  
    0.029*"state" + 0.026*"drug" + 0.022*"crime" + 0.019*"person" +  
    0.019*"citizen" + 0.019*"weapon" ),
   (16,
    0.107*"team" + 0.102*"game" + 0.078*"play" + 0.055*"win" + 0.052*"player" +  
    0.051*"year" + 0.030*"score" + 0.025*"goal" + 0.023*"wing" + 0.023*"run" ),
   (17,
    0.031*"say" + 0.026*"think" + 0.022*"people" + 0.020*"make" + 0.017*"see" +  
    0.016*"know" + 0.013*"come" + 0.013*"even" + 0.013*"thing" + 0.013*"give" ),
   (18,
    0.039*"system" + 0.034*"use" + 0.023*"key" + 0.016*"bit" + 0.016*"also" +  
    0.015*"information" + 0.014*"source" + 0.013*"chip" + 0.013*"available" +  
    0.010*"provide" ),
   (19,
    0.085*"pne" + 0.073*"write" + 0.053*"article" + 0.046*"organization" +  
    0.034*"host" + 0.023*"be" + 0.023*"know" + 0.017*"thank" + 0.016*"want" +  
    0.014*"help" )
]

Computing Model Perplexity

The LDA model (lda_model) we have created above can be used to compute the model’s perplexity, i.e. how good the model is. The lower the score the better the model will be. It can be done with the help of following script −


print( 
Perplexity:  , lda_model.log_perplexity(corpus))

Output


Perplexity: -12.338664984332151

Computing Coherence Score

The LDA model (lda_model) we have created above can be used to compute the model’s coherence score i.e. the average /median of the pairwise word-similarity scores of the words in the topic. It can be done with the help of following script −


coherence_model_lda = CoherenceModel(
   model=lda_model, texts=data_lemmatized, dictionary=id2word, coherence= c_v 
)
coherence_lda = coherence_model_lda.get_coherence()
print( 
Coherence Score:  , coherence_lda)

Output


Coherence Score: 0.510264381411751

Visuapsing the Topics-Keywords

The LDA model (lda_model) we have created above can be used to examine the produced topics and the associated keywords. It can be visuapsed by using pyLDAvispackage as follows −


pyLDAvis.enable_notebook()
vis = pyLDAvis.gensim.prepare(lda_model, corpus, id2word)
vis

Output

 Distance Map

From the above output, the bubbles on the left-side represents a topic and larger the bubble, the more prevalent is that topic. The topic model will be good if the topic model has big, non-overlapping bubbles scattered throughout the chart.

Advertisements