- Scikit Learn - Discussion
- Scikit Learn - Useful Resources
- Scikit Learn - Quick Guide
- Dimensionality Reduction using PCA
- Clustering Performance Evaluation
- Scikit Learn - Clustering Methods
- Scikit Learn - Boosting Methods
- Randomized Decision Trees
- Scikit Learn - Decision Trees
- Classification with Naïve Bayes
- Scikit Learn - KNN Learning
- Scikit Learn - K-Nearest Neighbors
- Scikit Learn - Anomaly Detection
- Scikit Learn - Support Vector Machines
- Stochastic Gradient Descent
- Scikit Learn - Extended Linear Modeling
- Scikit Learn - Linear Modeling
- Scikit Learn - Conventions
- Scikit Learn - Estimator API
- Scikit Learn - Data Representation
- Scikit Learn - Modelling Process
- Scikit Learn - Introduction
- Scikit Learn - Home
Selected Reading
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
选读
Scikit Learn - Randomized Decision Trees
This chapter will help you in understanding randomized decision trees in Sklearn.
Randomized Decision Tree algorithms
As we know that a DT is usually trained by recursively spptting the data, but being prone to overfit, they have been transformed to random forests by training many trees over various subsamples of the data. The sklearn.ensemble module is having following two algorithms based on randomized decision trees −
The Random Forest algorithm
For each feature under consideration, it computes the locally optimal feature/sppt combination. In Random forest, each decision tree in the ensemble is built from a sample drawn with replacement from the training set and then gets the prediction from each of them and finally selects the best solution by means of voting. It can be used for both classification as well as regression tasks.
Classification with Random Forest
For creating a random forest classifier, the Scikit-learn module provides sklearn.ensemble.RandomForestClassifier. While building random forest classifier, the main parameters this module uses are ‘max_features’ and ‘n_estimators’.
Here, ‘max_features’ is the size of the random subsets of features to consider when spptting a node. If we choose this parameter’s value to none then it will consider all the features rather than a random subset. On the other hand, n_estimators are the number of trees in the forest. The higher the number of trees, the better the result will be. But it will take longer to compute also.
Implementation example
In the following example, we are building a random forest classifier by using sklearn.ensemble.RandomForestClassifier and also checking its accuracy also by using cross_val_score module.
from sklearn.model_selection import cross_val_score from sklearn.datasets import make_blobs from sklearn.ensemble import RandomForestClassifier X, y = make_blobs(n_samples = 10000, n_features = 10, centers = 100,random_state = 0) RFclf = RandomForestClassifier(n_estimators = 10,max_depth = None,min_samples_sppt = 2, random_state = 0) scores = cross_val_score(RFclf, X, y, cv = 5) scores.mean()
Output
0.9997
Example
We can also use the sklearn dataset to build Random Forest classifier. As in the following example we are using iris dataset. We will also find its accuracy score and confusion matrix.
import numpy as np import pandas as pd from sklearn.model_selection import train_test_sppt from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report, confusion_matrix, accuracy_score path = "https://archive.ics.uci.edu/ml/machine-learning-database s/iris/iris.data" headernames = [ sepal-length , sepal-width , petal-length , petal-width , Class ] dataset = pd.read_csv(path, names = headernames) X = dataset.iloc[:, :-1].values y = dataset.iloc[:, 4].values X_train, X_test, y_train, y_test = train_test_sppt(X, y, test_size=0.30) RFclf = RandomForestClassifier(n_estimators = 50) RFclf.fit(X_train, y_train) y_pred = RFclf.predict(X_test) result = confusion_matrix(y_test, y_pred) print("Confusion Matrix:") print(result) result1 = classification_report(y_test, y_pred) print("Classification Report:",) print (result1) result2 = accuracy_score(y_test,y_pred) print("Accuracy:",result2)
Output
Confusion Matrix: [[14 0 0] [ 0 18 1] [ 0 0 12]] Classification Report: precision recall f1-score support Iris-setosa 1.00 1.00 1.00 14 Iris-versicolor 1.00 0.95 0.97 19 Iris-virginica 0.92 1.00 0.96 12 micro avg 0.98 0.98 0.98 45 macro avg 0.97 0.98 0.98 45 weighted avg 0.98 0.98 0.98 45 Accuracy: 0.9777777777777777
Regression with Random Forest
For creating a random forest regression, the Scikit-learn module provides sklearn.ensemble.RandomForestRegressor. While building random forest regressor, it will use the same parameters as used by sklearn.ensemble.RandomForestClassifier.
Implementation example
In the following example, we are building a random forest regressor by using sklearn.ensemble.RandomForestregressor and also predicting for new values by using predict() method.
from sklearn.ensemble import RandomForestRegressor from sklearn.datasets import make_regression X, y = make_regression(n_features = 10, n_informative = 2,random_state = 0, shuffle = False) RFregr = RandomForestRegressor(max_depth = 10,random_state = 0,n_estimators = 100) RFregr.fit(X, y)
Output
RandomForestRegressor( bootstrap = True, criterion = mse , max_depth = 10, max_features = auto , max_leaf_nodes = None, min_impurity_decrease = 0.0, min_impurity_sppt = None, min_samples_leaf = 1, min_samples_sppt = 2, min_weight_fraction_leaf = 0.0, n_estimators = 100, n_jobs = None, oob_score = False, random_state = 0, verbose = 0, warm_start = False )
Once fitted we can predict from regression model as follows −
print(RFregr.predict([[0, 2, 3, 0, 1, 1, 1, 1, 2, 2]]))
Output
[98.47729198]
Extra-Tree Methods
For each feature under consideration, it selects a random value for the sppt. The benefit of using extra tree methods is that it allows to reduce the variance of the model a bit more. The disadvantage of using these methods is that it spghtly increases the bias.
Classification with Extra-Tree Method
For creating a classifier using Extra-tree method, the Scikit-learn module provides sklearn.ensemble.ExtraTreesClassifier. It uses the same parameters as used by sklearn.ensemble.RandomForestClassifier. The only difference is in the way, discussed above, they build trees.
Implementation example
In the following example, we are building a random forest classifier by using sklearn.ensemble.ExtraTreeClassifier and also checking its accuracy by using cross_val_score module.
from sklearn.model_selection import cross_val_score from sklearn.datasets import make_blobs from sklearn.ensemble import ExtraTreesClassifier X, y = make_blobs(n_samples = 10000, n_features = 10, centers=100,random_state = 0) ETclf = ExtraTreesClassifier(n_estimators = 10,max_depth = None,min_samples_sppt = 10, random_state = 0) scores = cross_val_score(ETclf, X, y, cv = 5) scores.mean()
Output
1.0
Example
We can also use the sklearn dataset to build classifier using Extra-Tree method. As in the following example we are using Pima-Indian dataset.
from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.ensemble import ExtraTreesClassifier path = r"C:pima-indians-diabetes.csv" headernames = [ preg , plas , pres , skin , test , mass , pedi , age , class ] data = read_csv(path, names=headernames) array = data.values X = array[:,0:8] Y = array[:,8] seed = 7 kfold = KFold(n_sppts=10, random_state=seed) num_trees = 150 max_features = 5 ETclf = ExtraTreesClassifier(n_estimators=num_trees, max_features=max_features) results = cross_val_score(ETclf, X, Y, cv=kfold) print(results.mean())
Output
0.7551435406698566
Regression with Extra-Tree Method
For creating a Extra-Tree regression, the Scikit-learn module provides sklearn.ensemble.ExtraTreesRegressor. While building random forest regressor, it will use the same parameters as used by sklearn.ensemble.ExtraTreesClassifier.
Implementation example
In the following example, we are applying sklearn.ensemble.ExtraTreesregressor and on the same data as we used while creating random forest regressor. Let’s see the difference in the Output
from sklearn.ensemble import ExtraTreesRegressor from sklearn.datasets import make_regression X, y = make_regression(n_features = 10, n_informative = 2,random_state = 0, shuffle = False) ETregr = ExtraTreesRegressor(max_depth = 10,random_state = 0,n_estimators = 100) ETregr.fit(X, y)
Output
ExtraTreesRegressor(bootstrap = False, criterion = mse , max_depth = 10, max_features = auto , max_leaf_nodes = None, min_impurity_decrease = 0.0, min_impurity_sppt = None, min_samples_leaf = 1, min_samples_sppt = 2, min_weight_fraction_leaf = 0.0, n_estimators = 100, n_jobs = None, oob_score = False, random_state = 0, verbose = 0, warm_start = False)
Example
Once fitted we can predict from regression model as follows −
print(ETregr.predict([[0, 2, 3, 0, 1, 1, 1, 1, 2, 2]]))
Output
[85.50955817]Advertisements